测绘通报 ›› 2015, Vol. 0 ›› Issue (1): 44-49,62.doi: 10.13474/j.cnki.11-2246.2015.0008
Previous Articles Next Articles
MAO Yongfei, GAO Wenjun, HAN Yunzhong
Received:
2014-07-30
Online:
2015-01-25
Published:
2015-01-24
CLC Number:
MAO Yongfei, GAO Wenjun, HAN Yunzhong. Analysis of Residual Errors in SAR Motion Compensation[J]. 测绘通报, 2015, 0(1): 44-49,62.
[1] FORNARO G. Trajectory Deviations in Airborne SAR: Analysis and Compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997-1009. [2] FORNARO G, FRANCESCHETTI G, PERNA S. Motion Compensation Errors: Effects on the Accuracy of Airborne SAR Images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1338-1352. [3] BUCKREUSS S. Motion Errors in An Airborne Synthetic Aperture Radar System[J]. European Transactions on Telecommunications, 1991, 2(6): 655-664. [4] MALLORQUí J J, ROSADO I, BARA M. Interferometric Calibration for DEM Enhancing and System Characterization in Single Pass SAR Interferometry[C]//Proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium.[S.l.]: IEEE, 2001: 404-406. [5] 唐晓青. 机载干涉SAR运动误差建模与补偿方法研究[D]. 北京: 中国科学院电子学研究所, 2009. [6] WOOD J W. The Removal of Azimuth Distortion in Synthetic Aperture Radar Images[J]. International Journal of Remote Sensing, 1988, 9(6): 1097-1107. [7] WERNESS S A S, CARRARA W G, JOYCE L S, et al. Moving Target Imaging Algorithm for SAR Data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(1): 57-67. [8] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase Gradient Autofocus—A Robust Toll for High Resolution SAR Phase Correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835. [9] MOREIRA J R. A New Method of Aircraft Motion Error Extraction from Radar Raw Data for Real Time Motion Compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 620-626. [10] ISERNIA T, PASCAZIO V, PIERRI R, et al. Synthetic Aperture Radar Imaging from Phase-corrupted Data[J]. IEEE Proceedings—Radar, Sonar, Navigation, 1996, 143(4): 268-274. [11] DIFILIPPO D J, HASLAM G E, WIDNALL W S. Evaluation of A Kalman Filter for SAR Motion Compensation[C]//IEEE Position Location and Navigation Symposium. Orlando, FL: IEEE, 1988: 259-268. [12] PRATS P, REIGBER A, MALLORQUI J J. Topography-dependent Motion Compensation for Repeat-pass Interferometric SAR Systems[J]. Geoscience and Remote Sensing Letters, IEEE, 2005, 2(2): 206-210. [13] FORNARO G, FRANCESCHETTI G, PERNA S. On Center-beam Approximation in SAR Motion Compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(2): 276-280. [14] ZHENG X, YU W D, LI Z. A Novel Algorithm for Wide Beam SAR Motion Compensation Based on Frequency Division[C]//IEEE International Conference on Geoscience and Remote Sensing Symposium. Denver,USA: IEEE, 2006: 3160-3163. [15] PRATS P, DE MACEDO K A C, REIGBER A, et al. Comparison of Topography and Aperture-dependent Motion Compensation Algorithms for Airborne SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 349-353. [16] MOREIRA A, HUANG Y H. Airborne SAR Processing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029-1040. [17] MAO Y F, XIANG M S, WEI L D, et al. The Effect of IMU Inaccuracies on Airborne SAR Imaging[J]. Journal of Electrics (China), 2011, 28(4-6): 409-418. [18] MAO Y F, XIANG M S, WEI L D, et al. Error Analysis of SAR Motion Compensation[C]//IEEE International Conference on Imaging Systems and Techniques. Manchester: IEEE, 2012: 377-380. [19] 李芳芳, 仇晓兰, 孟大地, 等. 机载双天线InSAR运动补偿误差的影响分析[J]. 电子与信息学报, 2013, 35(3): 559-567. |
[1] | WANG Yanjun, LIN Yunhao, WANG Shuhan, LI Shaochun, WANG Mengjie. 3D road boundary extraction based on mobile laser scanning point clouds and OSM data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 18-25. |
[2] | LIU Lin, SUN Yi, LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26-32,99. |
[3] | KONG Ruiyao, XIE Tao, MA Ming, KONG Ruilin. Application of CatBoost model in water depth inversion [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 33-37. |
[4] | WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling. Study on inversion of forest biomass by LiDAR and hyperspectral [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 38-42. |
[5] | JIANG Zelin, DENG Jian, LUAN Haijun, LI Lanhui. Rapid extraction of COVID-19 information based on nighttime light remote sensing: a case study of Beijing [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 43-48. |
[6] | ZHENG Yan, HE Huan, BU Lijing, JIN Xin. Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 54-59. |
[7] | RAN Chongxian, LI Senlei. Tree canopy delineation using UAV multispectral imagery [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 112-117. |
[8] | LIU Li, DONG Xianmin, LIU Juan, WEN Xuehu. A new method of remote sensing interpretation production based on integration of human-machine and intelligence [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 118-123,137. |
[9] | AI Min, JING Hui, TIAN Yudong, GUO Lanqin, PEI Yuanjie. Analysis of land use and coverage change and driving force in Hulan district of Harbin city in recent 20 Years [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 124-128. |
[10] | LIU Yuxian, RUAN Minghao, YAN Zhen. A method for accurate extraction of gated electric towers based on airborne laser point cloud [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 129-133. |
[11] | LIU Guochao, PENG Weiping, YANG Shuihua, HU Zhouwen. Detection and application of urban road disease based on ground penetrating radar+3D measuring endoscope [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 134-137. |
[12] | LIU Xiaoyu, LIU Yang, DU Mingyi, ZHANG Min, JIA Jingjue, YANG Heng. Research on construction and demolition waste stacking point identification based on DeeplabV3+ [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 16-19,43. |
[13] | LI Jiahao, ZHOU Lü, MA Jun, YANG Fei, XIAN Lingxiao. Deformation monitoring and mechanism analysis of urban subway line based on PS-InSAR technology [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 20-25. |
[14] | SHI Yun, SHI Longlong, NIU Minjie, ZHAO Kan. Multi-task automatic identification of loess landslide based on one-stage instance segmentation network [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 26-31. |
[15] | DOU Shiqing, CHEN Zhiyu, XU Yong, ZHENG Hegang, MIAO Linlin, SONG Yingying. Hyperspectral image classification based on multi-feature fusion and dimensionality reduction algorithms [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 32-36,50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||