测绘通报 ›› 2015, Vol. 0 ›› Issue (9): 1-5.doi: 10.13474/j.cnki.11-2246.2015.0265
LONG Sichun1,2, CHEN Pengqi2, YUAN Ying2, JIANG Zongli1, WU Mengqing2
Received:
2014-10-08
Online:
2015-09-25
Published:
2015-09-25
CLC Number:
LONG Sichun, CHEN Pengqi, YUAN Ying, JIANG Zongli, WU Mengqing. Ground-based Synthetic Aperture Radar Interferometry and Its Deformation Monitoring[J]. 测绘通报, 2015, 0(9): 1-5.
[1] CASAGLI N, CATANI F, DEL VENTISETTE C, et al. Monitoring, Prediction, and Early Warning Using Ground-based Radar Interferometry[J]. Landslides, 2010, 7(3): 291-301. [2] LUZI G, PIERACCINI M, MECATTI D, et al. Ground-based Radar Interferometry for Landslides Monitoring: Atmospheric and Instrumental Decorrelation Sources on Experimental Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2454-2466. [3] NOFERINI L, PIERACCINI M, MECATTI D, et al. Permanent Scatterers Analysis for Atmospheric Correction in Ground-based SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7): 1459-1471. [4] 杨红磊, 彭军还, 崔洪曜. GB-InSAR监测大型露天矿边坡形变[J]. 地球物理学进展, 2012, 27(4): 1804-1811. [5] PIERACCINI M, CASAGLI N, LUZI G, et al. Landslide Monitoring by Ground-based Radar Interferometry: A Field Test in Valdarno (Italy)[J]. International Journal of Remote Sensing, 2002, 24(6): 1385-1391. [6] LEVA D, NICO G, TARCHI D, et al. Temporal Analysis of a Landslide by Means of a Ground-based SAR Interferometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 745-752. [7] TARCHI D, CASAGLI N, FANTI R, et al. Landslide Monitoring by Using Ground-based SAR Interferometry: An Example of Application to the Tessina Landslide in Italy[J]. Engineering Geology, 2003, 68(1-2): 15-30. [8] LINGUA A, PIATTI D, RINAUDO F. Remote Monitoring of A Landslide Using an Integration of GB-InSAR and Lidar Techniques[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 Part B1. Beijing:[s.n.], 2008. [9] HERRERA G, FERNáNDEZ-MERODO J A, MULAS J, et al. A Landslide Forecasting Model Using Ground Based SAR Data: the Portalet Case Study[J]. Engineering Geology, 2009, 105(3-4): 220-230. [10] Del VENTISETTE C, INTRIERI E, LUZI G, et al. Using Ground Based Radar Interferometry During Emergency: the Case of the A3 Motorway (Calabria Region, Italy) Threatened by a Landslide[J]. Natural Hazards and Earth System Science, 2011, 11(9): 2483-2495. [11] TARCHI D, RUDOLF H, PIERACCINI M, et al. Remote Monitoring of Buildings Using a Ground-based SAR: Application to Cultural Heritage Survey[J]. International Journal of Remote Sensing, 2000, 21(18): 3545-3551. [12] LUZI G, PIERACCINI M, MECATTI D, et al. Monitoring of an Alpine Glacier by Means of Ground-based SAR Interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 495-499. [13] 黄其欢, 张理想. 基于GBInSAR技术的微变形监测系统及其在大坝变形监测中的应用[J]. 水利水电科技进展, 2011, 31(3): 84-87. [14] 张建军. 地形微变远程监测仪在滑坡变形监测中的应用[J]. 人民珠江, 2011, 32(3): 67-70. [15] 张祥. 地基SFCW SAR差分干涉测量技术研究[D]. 长沙: 国防科学技术大学, 2011. |
[1] | WANG Yanjun, LIN Yunhao, WANG Shuhan, LI Shaochun, WANG Mengjie. 3D road boundary extraction based on mobile laser scanning point clouds and OSM data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 18-25. |
[2] | LIU Lin, SUN Yi, LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26-32,99. |
[3] | KONG Ruiyao, XIE Tao, MA Ming, KONG Ruilin. Application of CatBoost model in water depth inversion [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 33-37. |
[4] | WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling. Study on inversion of forest biomass by LiDAR and hyperspectral [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 38-42. |
[5] | JIANG Zelin, DENG Jian, LUAN Haijun, LI Lanhui. Rapid extraction of COVID-19 information based on nighttime light remote sensing: a case study of Beijing [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 43-48. |
[6] | ZHENG Yan, HE Huan, BU Lijing, JIN Xin. Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 54-59. |
[7] | RAN Chongxian, LI Senlei. Tree canopy delineation using UAV multispectral imagery [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 112-117. |
[8] | LIU Li, DONG Xianmin, LIU Juan, WEN Xuehu. A new method of remote sensing interpretation production based on integration of human-machine and intelligence [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 118-123,137. |
[9] | AI Min, JING Hui, TIAN Yudong, GUO Lanqin, PEI Yuanjie. Analysis of land use and coverage change and driving force in Hulan district of Harbin city in recent 20 Years [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 124-128. |
[10] | LIU Yuxian, RUAN Minghao, YAN Zhen. A method for accurate extraction of gated electric towers based on airborne laser point cloud [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 129-133. |
[11] | LIU Guochao, PENG Weiping, YANG Shuihua, HU Zhouwen. Detection and application of urban road disease based on ground penetrating radar+3D measuring endoscope [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 134-137. |
[12] | LIU Xiaoyu, LIU Yang, DU Mingyi, ZHANG Min, JIA Jingjue, YANG Heng. Research on construction and demolition waste stacking point identification based on DeeplabV3+ [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 16-19,43. |
[13] | LI Jiahao, ZHOU Lü, MA Jun, YANG Fei, XIAN Lingxiao. Deformation monitoring and mechanism analysis of urban subway line based on PS-InSAR technology [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 20-25. |
[14] | SHI Yun, SHI Longlong, NIU Minjie, ZHAO Kan. Multi-task automatic identification of loess landslide based on one-stage instance segmentation network [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 26-31. |
[15] | DOU Shiqing, CHEN Zhiyu, XU Yong, ZHENG Hegang, MIAO Linlin, SONG Yingying. Hyperspectral image classification based on multi-feature fusion and dimensionality reduction algorithms [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 32-36,50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||