测绘通报 ›› 2017, Vol. 0 ›› Issue (8): 13-18.doi: 10.13474/j.cnki.11-2246.2017.0246
Previous Articles Next Articles
LI Deqiang
Received:
2017-04-24
Online:
2017-08-25
Published:
2017-08-29
CLC Number:
LI Deqiang. High Precision Quasi-geoid Computations Using Improved Stokes-Helmert Boundary Value Problem[J]. 测绘通报, 2017, 0(8): 13-18.
[1] HECK B, SEITZ K. A Comparison of the Tesseroid, Prism and Point-mass Approaches for Mass Reductions in Gravity Field Modeling[J]. Journal of Geodesy, 2007, 81(2):121-136. [2] HEISKANEN W A, MORITZ H. Physical Geodesy[M]. San Francisco:Freeman WH, 1967. [3] MARTINEC Z, VANÍČEK P. Direct Topographical Effect of Helmert's Condensation for a Spherical Approximation of the Geoid[J]. Manuscr geod, 1994, 19:257-268. [4] NAHAVANDCHI H. On Some Methods of Downward Continua-tion of Mean Free-air Gravity Anomaly[J]. IGES Bull, 1998(8):1-17. [5] NAHAVANDCHI H, SJÖBERG L E. Terrain Corrections to Power 3 in Gravietric Geoid Determination[J]. Journal of Geodesy 1998, 72(3):124-135. [6] NAHAVANDCHI H. The Direct Topographical Correction in Gravimetric Geoid Determination by the Stokes-Helmert Method[J]. Journal of Geodesy, 2000, 74(6):488-496. [7] OMANG O C D, FORSBERG R. How to Handle Topography in Practical Geoid Determination:Three Examples[J].Lournal of Geodesy, 2000, 74:458-466. [8] SJÖBERG L E. On the Quasi-geoid to Geoid Separation[J]. Manuscr Geod, 1995, 20:182-192. [9] SJÖBERG L E. Topographic Effects by the Stokes-Helmert Method of Geoid and Quasi-geoid Determinations[J]. Journal of Geodesy, 2000, 74(2):255-268. [10] VANÍČEK P, NAJAFI M, MARTINEC Z, et al. Higher Order Reference Field in the Generalized Stokes-Helmert Scheme for Geoid Computation[J]. Journal of Geodesy, 1995, 70(3):176-182. [11] WICHIENCHAROEN C. The Indirect Effects on the Computation of Geoid Undulations[M]. Columbus:The Ohio State University, 1982. [12] VANÍČEK P, KINGDON R, KUHN M, et al. Testing Stokes-Helmert Geoid Model Computation on a Synthetic Gravity Field:Experiences and Shortcomings[J]. Studia eophysica et Geodaetica, 2013, 57(3):369-400. [13] VANÍČEK P, KLEUSBERG A. The Canadian Geoid-Stokesian Approach[J]. Manuscr Geodesy, 1987, 12(2):86-98. [14] 郭东美,鲍李峰,许厚泽.中国大陆厘米级大地水准面的地形影响分析[J]. 武汉大学学报(信息科学版),2016, 41(3):342-348. [15] 李建成,陈俊勇,宁津生,等.地球重力场逼近理论与中国2000年似大地水准面的确定[M],武汉:武汉大学出版社,2003. [16] 罗志才,陈永奇,宁津生. 地形对确定高精度局部大地水准面的影响[J].武汉大学学报(信息科学版), 2003, 28(3):340-344. [17] 许厚泽. 我国精化大地水准面工作中若干问题的讨论[J]. 地理空间信息,2006,5(4):1-3. [18] 章传银,晁定波,丁剑,等.厘米级高程异常地形影响的算法及特征分析[J].测绘学报, 2006, 35(4):340-344. |
[1] | JIA Xiuli. GPS multipath effect snow depth estimation by Gaussian process regression-assisted [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 78-82. |
[2] | XI Guangyong, GAO Jun, ZOU Dongyao, SHAO Xiaoya. The modeling of RSSI ranging temperature correction in temperature variation environment [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 83-86. |
[3] | ZHANG Bo, LIU Qiang, XU Guoliang, CAI Renlan, CHENG Feng. Application of GNSS+INS integrated navigation in mine auto-driving trucks [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 143-147. |
[4] | ZHAO Yinzhi, ZOU Jingui, CAI Lixian, HUANG Gege. An ultra wide band indoor positioning method considering electrical delay [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 1-5,31. |
[5] | LIU Zhuo, LI Jia, ZHANG Xiang, GUO Lei, LIU Yanyang, XU Haodong, GU Yunyang, CHEN Chonghua. Obtaining high-precision digital elevation model in Antarctica based on TanDEM-X images and ICESat-2 data [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 72-76. |
[6] | WAN Yingneng, XU Xuehan, LIU Kexian. Integrated navigation algorithm of multi-joint deep-sea vehicle [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 90-95. |
[7] | LUO Youan, JIANG Aiguo, YANG Fuxin, ZHANG Jie, HE Dongxu, XU Yinglong. Application research of BDS precise point positioning on dynamic positioning system of offshore oil drilling rig [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 111-116. |
[8] | XIAO Haowei, WANG Jianglin, GUO Hairong, YANG Liyang. Real-time precise point positioning precision analysis based on PPP-B2b service [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 117-121. |
[9] | DING Renjun, WANG Youkun, ZHANG Junhua, LIU Chen. Kunming zenith wet delay model based on a backpropagation neural network [J]. Bulletin of Surveying and Mapping, 2022, 0(3): 107-110. |
[10] | GAO Zhiyu, GUO Jinyi, LIU Jie. Application progress of BDS in monitoring crustal deformation [J]. Bulletin of Surveying and Mapping, 2022, 0(3): 32-35. |
[11] | QIAN Wenjin, ZHANG Lin, ZHANG Zelie, ZENG Pan, JIANG Ziwei, QU Xiaowen. Assessing the L5 positioning performance of IRNSS and QZSS in their primary service areas: stand-alone and combined with GPS [J]. Bulletin of Surveying and Mapping, 2021, 0(10): 88-93. |
[12] | FENG Zhiqiang, ZHANG Yaodong, HU Danhui, ZHOU Guangyuan, LI Zhaohui, ZHOU Xueming, MAO Xiaopo. Influence analysis of transmission line electromagnetic interference on BDS data quality and accuracy [J]. Bulletin of Surveying and Mapping, 2021, 0(10): 94-97,113. |
[13] | REN Jianfu, WEI Zhongyang, ZHANG Zhilin, QUAN Junping, CHENG Shaoqiang. Application of EM2040C multibeam echosounder system in the quantitative monitoring of sea sand mining [J]. Bulletin of Surveying and Mapping, 2021, 0(10): 136-140. |
[14] | QIAN Wei, YUE Jianping. Application of MSSA in GPS coodinate series analysis [J]. Bulletin of Surveying and Mapping, 2021, 0(9): 49-52,63. |
[15] | ZHANG Shifang, ZHANG Jin. Application of Kalman filter in GNSS monitoring of ground subsidence in Xishan coalfield of Shanxi province [J]. Bulletin of Surveying and Mapping, 2021, 0(9): 103-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||