Bulletin of Surveying and Mapping ›› 2021, Vol. 0 ›› Issue (4): 52-59.doi: 10.13474/j.cnki.11-2246.2021.0110
Previous Articles Next Articles
SHI Lingfan1, WANG Ping1, HUANG Liangke2,3,4
Received:
2020-06-05
Online:
2021-04-25
Published:
2021-04-30
CLC Number:
SHI Lingfan, WANG Ping, HUANG Liangke. Construction on atmospheric weighted mean temperature model over the Tibetan Plateau[J]. Bulletin of Surveying and Mapping, 2021, 0(4): 52-59.
[1] WANG J H, ZHANG L R, DAI A G, et al. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D11):D007529. [2] JACOB D. The role of water vapour in the atmosphere. A short overview from a climate modeller's point of view[J]. Physics and Chemistry of the Earth Part A Solid Earth and Geodesy, 2001, 26(6-8):523-527. [3] WANG J H, ZHANG L Y. Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products[J]. Journal of Geodesy, 2009, 83:209-217. [4] ROCKEN C, WARE R, VAN HOVE T, et al. Sensing atmospheric water vapor with the global positioning system[J]. Geophysical Research Letters, 1993, 20(23):2631-2634. [5] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [6] ZHANG K, MANNING T, WU S, et al. Capturing the signature of severe weather events in Australia using GPS measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1839-1847. [7] SUPARTA W, RAHMAN R. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood[J]. Atmospheric Research, 2016, 168:205-219. [8] ZHAO Q Z, YAO Y B, YAO W Q. GPS-based PWV for precipitation forecasting and its application to a typhoon event[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167:124-133. [9] ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Science, 1987, 22(3):379-386. [10] YAO Y B, XU C Q, ZHANG B, et al. GTm-Ⅲ:a new global empirical model for mapping zenith wet delays onto precipitable water vapour[J]. Geophysical Journal International, 2014, 197(1):202-212. [11] ROSS R J, ROSENFELD S. Estimating mean weighted temperature of the atmosphere for global positioning system applications[J]. Journal of Geophysical Research, 1997,102(D18):21719-21730. [12] EMARDSON T R, DERKS H J P. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere[J]. Meteorological Applications, 2000, 7(1):61-68. [13] 姚朝龙, 罗志才, 刘立龙, 等. 顾及地形起伏的中国低纬度地区湿延迟与可降水量转换关系研究[J]. 武汉大学学报(信息科学版), 2015, 40(7):907-912. [14] YAO Y B, ZHU S, YUE S Q. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere[J]. Journal of Geodesy, 2012, 86(12):1125-1135. [15] YAO Y B, XU C Q, ZHANG B, et al. A global empirical model for mapping zenith wet delays onto precipitable water vapor using GGOS Atmosphere data[J]. Science China Earth Sciences, 2015, 58(8):1361-1369. [16] YAO Y B, ZHANG B, YUE S Q, et al. Global empirical model for mapping zenith wet delays onto precipitable water[J]. Journal of Geodesy, 2013, 87(5):439-448. [17] HUANG L R, JIANG W P, LIU L L, et al. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor[J]. Journal of Geodesy, 2019, 93(2):159-176. [18] 许超钤, 姚宜斌, 张豹, 等.GGOS Atmosphere大气加权平均温度数据的精度检验与分析[J]. 测绘地理信息,2014, 39(4):13-16. [19] HE C Y, WU S Q, WANG X M, et al. A new voxel-based model for the determeanation of atmospheric weighted mean temperature in GPS atmospheric sounding[J]. Atmospheric Measurement Techniques, 2017, 10(6):2045-2060. [20] BÖHM J, MOLLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3):433-441. |
[1] | JIA Xiuli. GPS multipath effect snow depth estimation by Gaussian process regression-assisted [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 78-82. |
[2] | XI Guangyong, GAO Jun, ZOU Dongyao, SHAO Xiaoya. The modeling of RSSI ranging temperature correction in temperature variation environment [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 83-86. |
[3] | ZHANG Bo, LIU Qiang, XU Guoliang, CAI Renlan, CHENG Feng. Application of GNSS+INS integrated navigation in mine auto-driving trucks [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 143-147. |
[4] | ZHAO Yinzhi, ZOU Jingui, CAI Lixian, HUANG Gege. An ultra wide band indoor positioning method considering electrical delay [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 1-5,31. |
[5] | LIU Zhuo, LI Jia, ZHANG Xiang, GUO Lei, LIU Yanyang, XU Haodong, GU Yunyang, CHEN Chonghua. Obtaining high-precision digital elevation model in Antarctica based on TanDEM-X images and ICESat-2 data [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 72-76. |
[6] | WAN Yingneng, XU Xuehan, LIU Kexian. Integrated navigation algorithm of multi-joint deep-sea vehicle [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 90-95. |
[7] | LUO Youan, JIANG Aiguo, YANG Fuxin, ZHANG Jie, HE Dongxu, XU Yinglong. Application research of BDS precise point positioning on dynamic positioning system of offshore oil drilling rig [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 111-116. |
[8] | XIAO Haowei, WANG Jianglin, GUO Hairong, YANG Liyang. Real-time precise point positioning precision analysis based on PPP-B2b service [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 117-121. |
[9] | GAO Zhiyu, GUO Jinyi, LIU Jie. Application progress of BDS in monitoring crustal deformation [J]. Bulletin of Surveying and Mapping, 2022, 0(3): 32-35. |
[10] | DING Renjun, WANG Youkun, ZHANG Junhua, LIU Chen. Kunming zenith wet delay model based on a backpropagation neural network [J]. Bulletin of Surveying and Mapping, 2022, 0(3): 107-110. |
[11] | QIAN Wenjin, ZHANG Lin, ZHANG Zelie, ZENG Pan, JIANG Ziwei, QU Xiaowen. Assessing the L5 positioning performance of IRNSS and QZSS in their primary service areas: stand-alone and combined with GPS [J]. Bulletin of Surveying and Mapping, 2021, 0(10): 88-93. |
[12] | FENG Zhiqiang, ZHANG Yaodong, HU Danhui, ZHOU Guangyuan, LI Zhaohui, ZHOU Xueming, MAO Xiaopo. Influence analysis of transmission line electromagnetic interference on BDS data quality and accuracy [J]. Bulletin of Surveying and Mapping, 2021, 0(10): 94-97,113. |
[13] | QIAN Wei, YUE Jianping. Application of MSSA in GPS coodinate series analysis [J]. Bulletin of Surveying and Mapping, 2021, 0(9): 49-52,63. |
[14] | ZHANG Shifang, ZHANG Jin. Application of Kalman filter in GNSS monitoring of ground subsidence in Xishan coalfield of Shanxi province [J]. Bulletin of Surveying and Mapping, 2021, 0(9): 103-107. |
[15] | LI Jiangang, LI Honghui, CHAI Xiangjun, WANG Tianyu. Accuracy evaluation of GPS, BDS and GPS+BDS precise point positioning [J]. Bulletin of Surveying and Mapping, 2021, 0(9): 124-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||