[1] SCHUMACHER M, KING M A, ROUGIER J, et al. A new global GPS data set for testing and improving modelled GIA uplift rates[J]. Geophysical Journal International, 2018, 214(3):2164-2176. [2] 汪汉胜,WU P, 许厚泽. 冰川均衡调整(GIA)的研究[J]. 地球物理学进展, 2009, 24(6):1958-1967. [3] DEGRANDPRE K G, FREYMUELLER J T. Vertical velo-cities, glacial isostatic adjustment, and earth structure of Northern and Western Alaska based on repeat GPS measurements[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(8):9148-9163. [4] PELTIER W R. Postglacial variations in the level of the sea:implications for climate dynamics and solid-earth geophysics[J]. Reviews of Geophysics, 1998,36(4):603-689. [5] LIDBERG M, JOHANSSON J M, SCHERNECK H G, et al. An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia[J]. Journal of Geodesy, 2007,81(3):213-230. [6] MILNE G A, DAVIS J L, MITROVICA J X, et al. Space-geodetic constraints on glacial isostatic adjustments in Fennoscandia[J]. Science, 2001, 291(5512):2381-2385. [7] KHAN S A, SASGEN I, BEVIS M, et al. Geodetic measurements reveal similarities between post-last glacial maximum and present-day mass loss from the Greenland ice sheet[J]. Science Advance, 2016, 2(9):e1600931. [8] PETROV L, BOY J P. Study of the atmospheric pressure loading signal in very long baseline interferometry observations[J]. Journal of Geophysical Research, 2004, 109(B3):B03405. [9] PELTIER W R. Global glacial isostasy and the surface of the ice-age Earth:the ICE-5G (VM2) model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 20(32):111-149. [10] PELTIER W R, ARGUS D F, DRUMMOND R. Comment on "An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model" by Purcell et al[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(2):2019-2028. [11] GUO J Y, HUANG Z W, SHUM C K, et al. Comparisons among contemporary glacial isostatic adjustment models[J]. Journal of Geodesy, 2012, 61:129-137. [12] SPADA G, ANTONIOLI A, BOSCHI L, et al. Modeling earth's post-glacial rebound[J]. EOS Transactions, American Geophysical Union, 2004, 85(6):62-64. [13] ZHOU Y, YANG S M, LUO J S, et al. Global glacial isostatic adjustment constrained by GPS measurements:spherical harmonic analyses of uplifts and geopotential variations[J]. Remote Senses, 2020, 12(7):1209. [14] PURCELL A, TREGONING P, DEHECQ A. An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model[J]. Journal of Geophysical Research:Solid Earth, 2016,121(5):3939-3950. [15] 刘洋洋, 党亚民, 许长辉. 基于GAMIT对国家GNSS基准站进行的北斗基线解算分析[J]. 测绘工程, 2019, 28(3):25-29. [16] HE X X, MONTILLET J P, FERNANDES R, et al. Review of current GPS methodologies for producing accurate time series and their error sources[J]. Journal of Geodynamics, 2017, 106:12-29. [17] ME'TIVIER L, ALTAMIMI Z, ROUBY H. Past and present ITRF solutions from geophysical perspectives[J]. Advances in Space Research, 2020, 65(12):2711-2722. [18] RIVA R E M, FREDERIKSE T, KING M A, et al. Brief communication:the global signature of post-1900 land ice wastage on vertical land motion[J]. The Cryosphere, 2017,11:1327-1332. |