[1] |
胡炳南, 郭文砚. 我国采煤沉陷区现状、综合治理模式及治理建议[J]. 煤矿开采, 2018, 23(2):1-4.
|
[2] |
易四海, 滕永海, 唐志新, 等. 采煤沉陷区大型建筑物与地基相互作用机理研究[J]. 煤炭科学技术, 2020, 48(10):166-172.
|
[3] |
滕永海, 唐志新. 老采空区地面建筑技术研究及应用[J]. 煤炭科学技术, 2016, 44(1):183-186.
|
[4] |
郭广礼. 老采空区上方建筑地基变形机理及其控制[M]. 徐州:中国矿业大学出版社, 2001.
|
[5] |
陈卓, 马洪超. 基于机载LiDAR数据的大型立交桥自动提取与建模方法[J]. 测绘学报, 2012, 41(2):252-258.
|
[6] |
陈利燕, 林鸿, 吴健华. 融合随机森林和超像素分割的建筑物自动提取[J]. 测绘通报, 2021(2):49-53.
|
[7] |
顾元元, 陈冉丽, 吴侃, 等. 矿区桥梁变形监测的三维激光扫描技术[J]. 金属矿山, 2019(10):188-193.
|
[8] |
李倩文, 陶利, 苑香刚, 等. 三维激光扫描技术在越江隧道大修工程中的应用[J]. 隧道与轨道交通, 2018(3):34-37.
|
[9] |
张继贤, 林祥国, 梁欣廉. 点云信息提取研究进展和展望[J]. 测绘学报, 2017, 46(10):1460-1469.
|
[10] |
卢秀山, 邢皑强, 刘如飞, 等. 一种三维激光点云中建筑物立面渐进分割方法[J]. 测绘科学, 2019, 44(12):7-13.
|
[11] |
WANG J, SHAN J. Segmentation of LiDAR point clouds for building extraction[C]//Proceedings of 2009 ASPRS Annual Conference. Baltimore,Maryland:[s.n.], 2009.
|
[12] |
TSENG Y H, HUNG H C. Extraction of building boundary lines from airborne lidar point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B3:957-962.
|
[13] |
ZHOU Zixiang, GONG Jie. Automated residential building detection from airborne LiDAR data with deep neural networks[J]. Advanced Engineering Informatics, 2018, 36:229-241.
|
[14] |
BRZANK A,HEIPKE C. Classification of LiDAR data into water and land points in coastal areas[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,2006,36(3):197-202.
|
[15] |
KOHONEN T. An introduction to neural computing[J]. Neural Networks, 1988, 1(1):3-16.
|
[16] |
HU Xiangyun, YUAN Yi. Deep-learning-based classification for DTM extraction from ALS point cloud[J]. Remote Sensing, 2016, 8(9):730.
|
[17] |
ZHANG Zhiyuan, DAI Yuchao, SUN Jiadai. Deep learning based point cloud registration:an overview[J]. Virtual Reality & Intelligent Hardware, 2020,2(3):222-246.
|
[18] |
CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:77-85.
|
[19] |
陈境焕, 李海艳, 林景亮. 基于深度学习的零件点云分割算法研究[J]. 机电工程, 2020, 37(3):326-331.
|
[20] |
MATURANA D,SCHERER S.VoxNet:a 3D convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg:IEEE, 2015:922-928.
|
[21] |
MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology, 1990, 52(1/2):99-115.
|
[22] |
HAN Jun, MORAGA C. The influence of the sigmoid function parameters on the speed of backpropagation learning[C]//Proceedings of 1995 International Workshop on Artificial Neural Networks:from Natural to Artificial Neural Computation.[S.l.]:Springer-Verlag, 1995.
|
[23] |
MINSKY M, PAPERT S A. Perceptrons[M].[S.l.]:The MIT Press, 2017.
|
[24] |
余加勇. 基于GNSS和RTS技术的桥梁结构动态变形监测研究[D]. 长沙:湖南大学,2015.
|
[25] |
侯旭, 向小菊, 周志祥, 等. 基于NURBS曲面叠差分析的桥面变形监测方法[J]. 实验室研究与探索, 2018, 37(10):38-42.
|