[1] 冯发杰,丁亚洲,吏军平,等.使用显著性划分的机载激光雷达点云滤波[J].红外与激光工程,2020,49(8):20190439-1-20190439-9. [2] 周钦坤,岳建平,杨恒,等.机载LiDAR数据中电力线的自动提取与重建[J].测绘通报,2020(10):26-30. [3] 曹爽,潘锁艳,管海燕.机载多光谱LiDAR的随机森林地物分类[J].测绘通报, 2019(11):79-84. [4] ZHU Q, LI Y, HU H, et al. Robust point cloud classi fication based on multi-level semantic relationships for urban scenes[J]. ISPRS Journal of Photogrammetry&Remote Sensing, 2017, 129:86-102. [5] 赵传,郭海涛,卢俊,等.基于深度残差网络的机载LiDAR点云分类[J].测绘学报,2020,49(2):202-213. [6] 熊艳,高仁强,徐战亚.机载LiDAR点云数据降维与分类的随机森林方法[J].测绘学报,2018,47(4):508-518. [7] LUO H, WANG C, WEN C L, et al. Semantic labeling of mobile lidar point clouds via active learning and higher order MRF[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):3631-3644. [8] HUANG X,LU Q,ZHANG L,et al.New postprocessing methods for remote sensing image classification:a systematic study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7140-7159. [9] 胡海瑛,惠振阳,李娜.基于多基元特征向量融合的机载LiDAR点云分类[J].中国激光,2020,47(8):1-11. [10] GERKE M, XIAO J. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2014,87:78-92. [11] LIN Y B, WANG C, ZHAI D W, et al. Toward better boundary preserved supervoxel segmentation for 3D point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143:39-47. [12] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Contextual classification of lidar data and building object detection in urban areas[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,87:152-165. [13] MUNOZ D,BAGNELL J A,VANDAPEL N,et al.Contextual classification with functional max-margin Markov networks[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition.Miami,FL:IEEE, 2009:975-982. [14] WEINMANN M, JUTZI B, MALLET C. Feature relevance assessment for the semantic interpretation of 3D point cloud data[EB/OL].[2021-06-21]. http://recherche.ign.fr/labos/matis/pdf/articles_conf/2013/LS2013-39-2_finalpaper.pdf. [15] WANG L, MENG W L, XI R P, et al. Large-scale 3D point cloud classification based on feature description matrix by CNN[C]//Proceedings of the 31st International Conference on Computer Animation and Social Agents. Beijing:[s.n.], 2018:43-47. [16] MUNOZ D, VANDAPEL N, HEBERT M. Directional associative Markov network for 3-D point cloud classification[EB/OL].[2021-06-21]. https://www.cc.gatech.edu/conferences/3DPVT08/Program/Papers/paper200.pdf. |