[1] 圣倩倩,高顺,顾舒文,等.CO2浓度升高对植物生理生化影响的研究进展[J].西部林业科学,2021,50(3):171-176. [2] 刘仁厚,王革,黄宁,等.中国科技创新支撑碳达峰、碳中和的路径研究[J].广西社会科学,2021(8):1-7. [3] 曲苑婷,汪垚,刘观潮,等.基于GLAS激光雷达反演森林生物量[J].测绘通报,2014(11):73-77. [4] NAESSET E,GOBAKKEN T.Estimation of above-and below-ground biomass across regions of the boreal forest zone using airborne laser[J].Remote Sensing of Environment,2008,112(6):3079-3090. [5] 郑朝菊.基于激光雷达和外推模型的森林地上生物量估算研究[D].北京:中国科学院遥感与数字地球研究所,2017. [6] 申鑫,曹林,佘光辉.高光谱与高空间分辨率遥感数据的亚热带森林生物量反演[J].遥感学报,2016,20(6):1446-1460. [7] 周俊宏,王子芝,廖声熙,等.基于GF-1影像的普达措国家公园森林地上生物量遥感估算[J].农业工程学报,2021,37(4):216-223. [8] 曾晶,张晓丽.高分一号遥感影像下崂山林场林分生物量反演估算研究[J].中南林业科技大学学报,2016,36(1):46-51. [9] 魏智海,张乐艺,李霞.森林地上生物量遥感估算研究进展[J].农业与技术,2021,41(11):78-84. [10] 王长委,胡月明,沈德才,等.多源光学遥感数据估算桉树森林生物量[J].测绘通报,2014(12):20-23. [11] CHEN Gang,HAY G J,CASTILLA G,et al.A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quickbird imagery[J].International Journal of Geographical Information Science,2011,25(6):877-893. [12] BROVKINA O,NOVOTNY J,CIENCIALA E,et al.Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe[J].Ecological Engineering,2017,100:219-230. [13] LUO Shezhou,WANG Cheng,XI Xiaohuan,et al.Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI,canopy height and above-ground biomass[J].Ecological Indicators,2019,102:801-812. [14] LUO Shezhou,WANG Cheng,XI Xiaohuan,et al.Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation[J].Ecological Indicators,2017,73:378-387. [15] JENKINS J C,CHOJNACKY D C,HEATH L S,et al.Comprehensive database of diameter-based biomass regressions for North American treespecies[M].[S.l.]:United States Department of Agriculture,Forest Service,Northeastern,2004. |