[1] WANG Miaomiao,WANG Shaoqiang,ZHAO Jian,et al. Global positive gross primary productivity extremes and climate contributions during 1982-2016[J]. Science of the Total Environment,2021,774:145703. [2] WANG Yanji,SHEN Xiangjin,JIANG Ming,et al. Daytime and nighttime temperatures exert different effects on vegetation net primary productivity of marshes in the western Songnen Plain[J]. Ecological Indicators,2022,137:108789. [3] 杨丹,王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究,2022,39(2):584-593. [4] MNGADI M,ODINDI J,MUTANGA O,et al. Estimating aboveground net primary productivity of reforested trees in an urban landscape using biophysical variables and remotely sensed data[J]. Science of the Total Environment,2022,802:149958. [5] LIU Xin,WANG Ping,SONG Hang,et al. Determinants of net primary productivity:low-carbon development from the perspective of carbon sequestration[J]. Technological Forecasting & Social Change,2021,172:121006. [6] ZHANG Yanjie,PAN Ying,LI Meng,et al. Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet[J]. Ecosystem Services,2021,47:101231. [7] 朴世龙,何悦,王旭辉,等. 中国陆地生态系统碳汇估算:方法、进展、展望[J]. 中国科学:地球科学,2022,52(6):1010-1020. [8] 朴世龙,岳超,丁金枝,等. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学:地球科学,2022,52(7):1419-1426. [9] 杨洁,谢保鹏,张德罡.黄河流域生态系统服务权衡协同关系时空异质性[J].中国沙漠,2021,41(6):78-87. [10] 王涛,赵元真,王慧,等.基于GIMMS NDVI的青藏高原植被指数时空变化及其气温降水响应[J].冰川冻土,2020,42(2):641-652. [11] LIN Min,HOU Lizhu,QI Zhiming,et al. Impacts of climate change and human activities on vegetation NDVI in China's Mu Us Sandy Land during 2000-2019[J]. Ecological Indicators,2022,142:109164. [12] 张振东,常军. 2001-2018年黄河流域植被NPP的时空分异及生态经济协调性分析[J]. 华中农业大学学报,2021,40(2):166-177. [13] SONG Liyi,LI Mingyang,XU Hai,et al. Spatiotemporal variation and driving factors of vegetation net primary productivity in a typical karst area in China from 2000 to 2010[J]. Ecological Indicators,2021,132:108280. [14] 田智慧,张丹丹,赫晓慧,等. 2000-2015年黄河流域植被净初级生产力时空变化特征及其驱动因子[J]. 水土保持研究,2019,26(2):255-262. [15] 陈强,陈云浩,王萌杰,等. 2001-2010年黄河流域生态系统植被净第一性生产力变化及气候因素驱动分析[J]. 应用生态学报,2014,25(10):2811-2818. [16] 王娟,何慧娟,董金芳,等. 黄河流域植被净初级生产力时空特征及自然驱动因子[J]. 中国沙漠,2021,41(6):213-222. [17] 曹云,孙应龙,陈紫璇,等. 2000-2020年黄河流域植被生态质量变化及其对极端气候的响应[J]. 生态学报,2022,42(11):4524-4535. [18] 杨永菊,乔旭宁,郭静,等. 河南省不同主体功能区城镇扩张及其对净初级生产力的影响[J]. 地域研究与开发,2022,41(2):27-33. [19] 计伟,刘海江,高吉喜,等. 黄河流域生态质量时空变化分析[J]. 环境科学研究,2021,34(7):1700-1709. [20] 徐建华. 现代地理学中的数学方法[M]. 2版. 北京:高等教育出版社,2002. [21] LI Chuanhua,ZHOU Min,DOU Tianbao,et al. Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity[J]. Ecological Indicators,2021,132:108282. [22] LIU Yangyang,ZHOU Ronglei,WEN Zhongming,et al. Assessing the impacts of drought on net primary productivity of global land biomes in different climate zones[J]. Ecological Indicators,2021,130:108146. [23] LI Saibo,HE Shaoyang. The variation of net primary productivity and underlying mechanisms vary under different drought stress in Central Asia from 1990 to 2020[J]. Agricultural and Forest Meteorology,2022,314:108767. [24] WANG Kai,BASTOS A,CIAIS P,et al. Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability[J]. Nature Communications,2022,13:3469. [25] PIAO Shilong,WANG Xuhui,WANG Kai,et al. Interannual variation of terrestrial carbon cycle:issue and perspectives[J]. Global Change Biology,2019,26(1):300-318. |