[1] 吴文伟,刘竞.北京市固体废弃物分布调查中遥感技术的应用[J]. 环境卫生工程,2000,8(2): 76-78. [2] 王学平,梅安新. 遥感技术在上海市固体废物分布调研中的应用[J]. 上海环境科学,1995(10): 50-51. [3] SILVESTRI S,OMRI M. A method for the remote sensing identification of uncontrolled landfills: formulation and validation[J]. International Journal of Remote Sensing,2008,29(4): 975-989. [4] 雒立群,郭舟,赵文智,等. 结合高光谱和高空间分辨率影像提取城市固体废弃物堆[J]. 测绘通报,2016(2): 38-41. [5] 张方利,杜世宏,郭舟. 应用高分辨率影像的城市固体废弃物提取[J]. 光谱学与光谱分析,2013,33(8): 2024-2030. [6] 秦海春,张晓亮. 基于国产高分遥感影像的城镇垃圾填埋场监测管理研究[J]. 中国建设信息化,2015(21): 76-78. [7] 林祥国,张继贤. 面向对象的形态学建筑物指数及其高分辨率遥感影像建筑物提取应用[J]. 测绘学报,2017,46(6): 724-733. [8] 陈浩. 高分辨遥感图像灾区建筑检测[D]. 南京: 南京理工大学,2015. [9] 陈行,卓莉,陶海燕. 基于MMBI的高分辨率影像建筑物提取研究[J]. 遥感技术与应用,2016,31(5): 930-938. [10] LI Gang,WANG Qingzhong. Research on reefs extraction method based on multi-spectral remote sensing[C]//Proceedings of 2013 International Conference on Business Intelligence and Financial Engineering. Hangzhou:IEEE,2014: 14-17. [11] PESARESI M,BENEDIKTSSON J A. A new approach for the morphological segmentation of high-resolution satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(2): 309-320. [12] GAVANKAR N L,GHOSH S K. Automatic building footprint extraction from high-resolution satellite image using mathematical morphology[J]. European Journal of Remote Sensing,2018,51(1): 182-193. [13] LIN Fenfang,ZHANG Dongyan,HUANG Yanbo,et al. Detection of corn and weed species by the combination of spectral,shape and textural features[J]. Sustainability,2017,9(8): 1335. [14] JIN Baoxuan,YE Peng,ZHANG Xueying,et al. Object-oriented method combined with deep convolutional neural networks for land-use-type classification of remote sensing images[J]. Journal of the Indian Society of Remote Sensing,2019,47(6): 951-965. [15] MAO X,DU Z,LIU Jia,et al. Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.[J].Chinese Journal of Applied Ecology,2018,29(1): 44-52. [16] 叶利华,王磊,张文文,等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报,2019,48(6): 698-707. |