[1] SUN Meiping,LIU Shiyin,YAO Xiaojun,et al.Glacier changes in the Qilian Mountains in the past half-century: based on the revised First and Second Chinese Glacier Inventory[J].Journal of Geographical Sciences,2018,28(2): 206-220. [2] 秦大河,周波涛,效存德.冰冻圈变化及其对中国气候的影响[J].气象学报,2014,72(5):869-879. [3] 苏勃,高学杰,效存德.IPCC《全球1.5℃增暖特别报告》冰冻圈变化及其影响解读[J].气候变化研究进展,2019,15(4):395-404. [4] 效存德,杨佼,张通,等.冰冻圈变化的可预测性、不可逆性和深度不确定性[J].气候变化研究进展,2022,18(1):1-11. [5] 崔曼仪,周刚,张大弘,等.1900—2020年全球融雪洪水灾害及其影响[J].冰川冻土,2022,44(6):1898-1911. [6] 刘时银,姚晓军,郭万钦,等.基于第二次冰川编目的中国冰川现状[J].地理学报,2015,70(1):3-16. [7] QIU J.The third pole[J].Nature,2008,454(7203):393-396. [8] 丁永建,张世强,吴锦奎,等.中国冰冻圈水文过程变化研究新进展[J].水科学进展,2020,31(5):690-702. [9] 王康,张廷军,牟翠翠,等.从第三极到北极:气候与冰冻圈变化及其影响[J].冰川冻土,2020,42(1):104-123. [10] 段建平,王丽丽,任贾文,等.近百年来中国冰川变化及其对气候变化的敏感性研究进展[J].地理科学进展,2009,28(2):231-237. [11] 王聪强.1990-2015年唐古拉山冰川对气候变化响应的研究[D].兰州:兰州大学,2017. [12] FRIEDL P,WEISER F,FLUHRER A,et al.Remote sensing of glacier and ice sheet grounding lines:a review[J].Earth-Science Reviews,2020,201:102948. [13] FORTE E,SANTIN I,PONTI S,et al.New insights in glaciers characterization by differential diagnosis integrating GPR and remote sensing techniques:a case study for the Eastern Gran Zebrù glacier (Central Alps)[J].Remote Sensing of Environment,2021,267:112715. [14] ERIKSEN H Ø,ROUYET L,LAUKNES T R,et al.Recent acceleration of a rock glacier complex,Adjet,Norway,documented by 62 years of remote sensing observations[J].Geophysical Research Letters,2018,45(16):8314-8323. [15] GUO L,LI J,WU L,et al.Investigating the recent surge in the Monomah Glacier,Central Kunlun Mountain Range with multiple sources of remote sensing data[J].Remote Sensing,2020,12(6):966. [16] 何秋乐,匡星星,梁四海,等.1966—2015年长江源冰川融水变化及其对径流的影响:以冬克玛底河流域为例[J].人民长江,2020,51(2):77-85. [17] 谯程骏,何晓波,叶柏生.唐古拉山冬克玛底冰川雪冰度日因子研究[J].冰川冻土,2010,32(2):257-264. [18] 张寅生,姚檀栋,蒲健辰,等.青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J].冰川冻土,1997,19(3):214-222. [19] 范慧颖,董武,康宝生,等.基于遥感图像的山地冰川识别方法对比[J].水利水电技术,2020,51(5):47-58. [20] JI Qin,YANG TaiBao,HE Yi,et al.A simple method to extract glacier length based on digital elevation model and glacier boundaries for simple basin type glacier[J].Journal of Mountain Science,2017,14(9):1776-1790. [21] 郄宇凡,王宁练,吴玉伟,等.山地冰川表面温度反演算法对比:以祁连山七一冰川为例[J].山地学报,2021,39(1):129-142. [22] 符宝玲,琚锋,赵伟忠,等.利用Landsat 7与GF-1 WFV影像反演地表温度[J].测绘通报,2021(11):124-127,135. [23] 刘雪峰,刘春国,马东雷.不同地物类型下Landsat-7 ETM+热红外波段反演亮度温度的比较研究[J].河南城建学院学报,2013,22(1):29-34,51. [24] 张健,何晓波,叶柏生,等.近期小冬克玛底冰川物质平衡变化及其影响因素分析[J].冰川冻土,2013,35(2):263-271. [25] 段克勤,姚檀栋,王宁练,等.21世纪亚洲高山区冰川平衡线高度变化及冰川演化趋势[J].中国科学(地球科学),2022,52(8):1603-1612. [26] IPCC.IPCC Special report on the ocean and cryosphere in a hanging climate[M].Cambridge:Cambridge University Press,2019. [27] 陈亚宁,李稚,范煜婷,等.西北干旱区气候变化对水文水资源影响研究进展[J].地理学报,2014,69(9):1295-1304. [28] 谯程骏.唐古拉山冬克玛底地区冰川变化遥感监测[J].安徽农业科学,2010,38(14):7703-7705. [29] 王琼,王欣,雷东钰,等.山地冰川演化与冰湖发育相互作用机制[J].冰川冻土,2022,44(3):1041-1052. [30] KANG Shichang,ZHANG Yulan,QIAN Yun,et al.A review of black carbon in snow and ice and its impact on the cryosphere[J].Earth Science Reviews,2020,210:103346. |