| [1] KIRWAN M,MEGONIGAL J. Tidal wetland stability in the face of human impacts and sea-level rise. [J]. Nature,2013,504 (7478):53-60.
[2] WANG Chen,TEMMERMAN S. Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states?: an empirical study on intertidal flats and marshes[J]. Journal of Geophysical Research: Earth Surface,2013,118(1): 229-240.
[3] 王颖,朱大奎,周旅复,等. 南黄海辐射沙脊群沉积特点及其演变[J]. 中国科学(D辑: 地球科学),1998,28(5): 385-393.
[4] BATES P D,DE ROO A P J. A simple raster-based model for flood inundation simulation[J]. Journal of Hydrology,2000,236(1/2): 54-77.
[5] ZHANG Zhihua,HU Changtao,WU Zhihui,et al. Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies[J]. Scientific Reports,2023,13: 8031.
[6] AZIZ G,MINALLAH N,SAEED A,et al. Remote sensing based forest cover classification using machine learning[J]. Scientific Reports,2024,14: 69.
[7] PAHEDING S,SALEEM A,SIDDIQUI M F H,et al. Advancing horizons in remote sensing: a comprehensive survey of deep learning models and applications in image classification and beyond[J]. Neural Computing and Applications,2024,36(27): 16727-16767.
[8] 魏祥林. 多源、时间序列遥感影像支持下的江苏中部沿海潮沟系统演变研究[D]. 南京: 南京大学,2019.
[9] 李淑,李鹏,李振洪,等. 协同全极化SAR与光学遥感的潮沟精细提取方法[J]. 测绘通报,2024(5): 29-34,40.
[10] CAO Jicheng,LIU Qing,YU Chengfeng,et al. Extracting waterline and inverting tidal flats topography based on Sentinel-2 remote sensing images: a case study of the northern part of the North Jiangsu radial sand ridges[J]. Geomorphology,2024,461: 109323.
[11] 吴争鸣, 朱淮民, 常唐喜,等. 盐城国家级珍禽自然保护区蚊虫密度调查与分析[J]. 中国寄生虫学与寄生虫病杂志,2007,25(4):310-313.
[12] ZHANG Guanjin,ROSLAN S N A B,WANG Ci,et al. Research on land cover classification of multi-source remote sensing data based on improved U-Net network[J]. Scientific Reports,2023,13: 16275.
[13] DRUSCH M,DEL BELLO U,CARLIER S,et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment,2012,120: 25-36.
[14] HUETE A,DIDAN K,MIURA T,et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment,2002,83(1/2): 195-213.
[15] ZHANG Wenjiang,LU Qifeng,GAO Zhiqiang,et al. Response of remotely sensed normalized difference water deviation index to the 2006 drought of eastern Sichuan basin[J]. Science in China Series D: Earth Sciences,2008,51(5): 748-758.
[16] ZHA Y,GAO J,NI S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing,2003,24(3): 583-594.
[17] 王娟. 盐城淤泥质潮滩湿地互花米草入侵对丹顶鹤越冬生境质量影响研究[D]. 南京: 南京师范大学,2020.
[18] LIU C,SAKO H,FUJISAWA H. Handwritten numeral string recognition: effects of character normalization and feature extraction[J]. Ieice Transactions on Information and Systems,2005(8):1791-1798.
[19] ZHANG Xin,CUI Jintian,WANG Weisheng,et al. A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm[J]. Sensors,2017,17(7): 1474.
[20] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32.
[21] RODRIGUEZ-GALIANO V F,GHIMIRE B,ROGAN J,et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2012,67: 93-104.
[22] BELGIU M,DRǍGUþ L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,114: 24-31.
[23] CUTLER D R,EDWARDS JR T C,BEARD K H,et al. Random forests for classification in ecology[J]. Ecology,2007,88(11): 2783-2792.
[24] 宗影,阳佳伶,刘红玉,等. 互花米草入侵对盐城淤泥质潮滩湿地潮沟系统影响研究[J]. 海洋科学进展,2023,41(1): 109-122. |