[1] GAO Han,ZHAO Yang,GUO Peng,et al.Cycle and self-supervised consistency training for adapting semantic segmentation of aerial images[J].Remote Sensing,2022,14(7): 1527. [2] 甘文祥,张远谊,李欣园.一种航空影像建筑物检测的轻量化CNN建模方法[J].地理空间信息,2023,21(6): 24-27. [3] LI Yansheng,SHI Te,ZHANG Yongjun,et al.Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,175: 20-33. [4] ZHANG Zhaoxiang,DOI K,IWASAKI A,et al.Unsupervised domain adaptation of high-resolution aerial images via correlation alignment and self training[J].IEEE Geoscience and Remote Sensing Letters,2021,18(4): 746-750. [5] 刘海军,杨鸿海.基于非对称卷积网络的遥感影像地物检测方法研究[J].地理空间信息,2023,21(9): 73-76. [6] 王子明.基于注意力机制的遥感影像道路提取方法[J].地理空间信息,2025,23(1): 13-16. [7] 周晓忠,刘军廷,周海涛,等.基于自监督学习的多尺度差分高光谱异常检测[J].地理空间信息,2025,23(6): 37-42. [8] 潘杰,刘波,邹筱瑜.基于特征异常检测与伪标签回归的无监督对抗域适应[J].电子学报,2025,53(1): 128-140. [9] BOUDIAF M,DENTON T,VAN MERRIENBOER B,et al.In search for a generalizable method for source free domain adaptation[C]//Proceedings of the 40th International Conference on Machine Learning.Honolulu:ACM,2023: 2914-2931. [10] NATH KUNDU J,VENKAT N,RAHUL M V,et al.Universal source-free domain adaptation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle: IEEE,2020: 4543-4552. [11] YANG Shiqi,WANG Yaxing,VAN DE WEIJER J,et al.Generalized source-free domain adaptation[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal: IEEE,2022: 8958-8967. [12] 陆霆洋,吕凡,周涛,等.持续测试时域自适应图像分类方法[J].中国图象图形学报,2025,30(8): 2660-2674. [13] ZHAO Yang,GUO Peng,SUN Zihao,et al.ResiDualGAN: resize-residual DualGAN for cross-domain remote sensing images semantic segmentation[J].Remote Sensing,2023,15(5): 1428. [14] WANG Qin,DAI Dengxin,HOYER L,et al.Domain adaptive semantic segmentation with self-supervised depth estimation[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal: IEEE,2022: 8495-8505. [15] NIU Shuaicheng,WU Jiaxiang,ZHANG Yifan,et al.Towards stable test-time adaptation in dynamic wild world[EB/OL].[2025-10-25].https://arxiv.org/abs/2302.12400. [16] SUN Yu,WANG Xiaolong,LIU Zhuang,et al.Test-time training with self-supervision for generalization under distribution shifts[C]//Proceedings of the 37th International Conference on Machine Learning.[S.l.]: ACM Press,2020: 9229-9248. [17] ZHAO Yang,GUO Peng,GAO Han,et al.Depth-assisted ResiDualGAN for cross-domain aerial images semantic segmentation[J].IEEE Geoscience and Remote Sensing Letters,2023,20: 2500305. [18] WANG Dequan,SHELHAMER E,LIU Shaoteng,et al.Tent: fully test-time adaptation by entropy minimization[EB/OL].[2025-10-25].https://arxiv.org/abs/2006.10726. [19] YI Changan,CHEN Haotian,ZHANG Yifan,et al.From question to exploration: test-time adaptation in semantic segmentation[EB/OL].[2025-10-25].https://arxiv.org/abs/2310.05341. [20] WANG Qin,FINK O,VAN GOOL L,et al.Continual test-time domain adaptation[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).New Orleans: IEEE,2022: 7191-7201. [22] ZOU Yang,YU Zhiding,VIJAYA KUMAR B V K,et al.Unsupervised domain adaptation for semantic segmentation via class-balanced self-training[M]//Computer Vision-ECCV 2018.Cham:Springer International Publishing,2018: 297-313. [23] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning.Sydney: ACM Press,2017: 214-223. [24] SCHNEIDER S,RUSAK E,ECK L,et al.Improving robustness against common corruptions by covariate shift adaptation[J].Advances in Neural Information Processing Systems,2020,33: 11539-11551. [25] HU E J,SHEN Yelong,WALLIS P,et al.LoRA: low-rank adaptation of large language models[EB/OL].[2025-10-25].https://arxiv.org/abs/2106.09685. |