[1] ZHANG Y,ROSSOW W B, LACIS A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D19): 105-115. [2] 盛夏, 孙龙祥, 郑庆梅. 利用MODIS数据进行云检测[J]. 解放军理工大学学报(自然科学版), 2004(4): 98-102. [3] 孙汝星, 范荣双. 基于支持向量机的多特征融合影像云检测[J]. 测绘与空间地理信息, 2018, 41(6): 153-156. [4] 陈振炜, 张过, 宁津生, 等. 资源三号测绘卫星自动云检测[J]. 测绘学报, 2015, 44(3): 292-300. [5] ZHANG Y, ZHAO D, SUN J, et al.Adaptive convolutional neural network and its application in face recognition[J]. Neural Processing Letters, 2016, 43(2): 389-399. [6] 陈鸿翔. 基于卷积神经网络的图像语义分割[D]. 杭州: 浙江大学, 2016. [7] GOLDBERG Y. A primer on neural network models for natural language processing[J]. Journal of Artificial Intelligence Research, 2016, 57: 345-420. [8] 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016, 42(10): 1445-1465. [9] 罗仙仙, 曾蔚, 陈小瑜, 等. 深度学习方法用于遥感图像处理的研究进展[J]. 泉州师范学院学报, 2017, 35(6): 35-41. [10] 徐逸之, 姚晓婧, 李祥, 等. 基于全卷积网络的高分辨遥感影像目标检测[J]. 测绘通报, 2018(1): 77-82. [11] 徐启恒, 黄滢冰, 陈洋. 结合超像素和卷积神经网络的国产高分辨率遥感影像云检测方法[J]. 测绘通报, 2019(1): 50-55. [12] DRÖNNER J, KORFHAGE N, EGLI S, et al. Fast cloud segmentation using convolutional neural networks[J]. Remote Sensing, 2018, 10(11): 1782. [13] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention. [S.l.]: Springer, 2015: 234-241. [14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2016: 770-778. [15] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2017: 4700-4708. [16] 陆风, 张晓虎, 陈博洋,等. 风云四号气象卫星成像特性及其应用前景[J]. 海洋气象学报, 2017, 37(2): 1-12. [17] 王淦泉, 沈霞. 风云四号辐射成像仪及其数据在卫星气象中的应用[J]. 自然杂志, 2018, 40(1): 1-11. |