[1] ZHANG Y C, ROSSOW W B, LACIS A A, et al. Calcula-tion of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:refinements of the radiative transfer model and the input data[J]. Journal of Geophysical Research:Atmospheres,2004,109(D19):105-115. [2] JU J C, ROY D P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally[J]. Remote Sensing of Environment,2008,112(3):1196-1211. [3] ZHU Z, WOODCOCK C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118:83-94. [4] XIE F Y, SHI M Y, SHI Z W, et al. Multilevel cloud detection in remote sensing images based on deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(8):3631-3640. [5] 陈曦东,张肖,刘良云,等.增强型多时相云检测[J].遥感学报,2019,23(2):280-290. [6] 刘云峰,杨珍,韩骁,等.国产高分辨率卫星影像云检测方法分析[J].测绘通报,2020(11):66-70. [7] 张家强,李潇雁,李丽圆,等.基于深度残差全卷积网络的Landsat 8遥感影像云检测方法[J].激光与光电子学进展,2020,57(10):364-371. [8] 张永宏,蔡朋艳,陶润喆,等.基于改进U-Net网络的遥感图像云检测[J].测绘通报,2020(3):17-20. [9] ZHOU L C, ZHANG C, WU M. D-LinkNet:LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City:IEEE,2018. [10] 彭博.基于深度学习的遥感图像道路信息提取算法研究[D].成都:电子科技大学,2019. [11] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City:IEEE,2018:7132-7141. [12] LI X,WANG W H,HU X L,et al.Selective kernel networks[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach:IEEE,2019:510-519. [13] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu:IEEE,2017. [14] HE K M,ZHAN X Y, REN S Q. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). LasVegas:IEEE,2016:770-778. [15] JOHN L, ANDREW M, PEREIRA FERNANDO C N. Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning.[S.l.]:Publisher URL,2001. |