[1] 余岸竹, 刘冰, 邢志鹏, 等. 面向高光谱影像分类的显著性特征提取方法[J]. 测绘学报, 2019, 48(8): 985-995. [2] 刘冰,余旭初,张鹏强,等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报,2019,48(1):53-63. [3] 杜培军,夏俊士,薛朝辉,等.高光谱遥感影像分类研究进展[J].遥感学报, 2016,20(2):236-256. [4] 刘冰;余旭初;张鹏强,等.面对高光谱影像分类的半监督阶梯网络[J].测绘科学技术学报,2017,34(6):576-581. [5] LIU B, YU X C, YU A Z, et. al. Deep Few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 1-15. [6] CHEN Y S, LIN Z H, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [7] HU W, HUANG Y, LI W, et. al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015: 1-12. DOI:10.1155/2015/258619. [8] MOU L, GHAMISI P, ZHU X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655. [9] LIU Bing, YU Xuchu, YU Aazhu, et al. Spectral-spatial classification of hyperspectral imagery based on recurrent neural networks[J]. Remote Sensing Letters, 2018, 9(12):1118-1127. [10] YUE J, MAO S, LI M. A deep learning framework for hyperspectral image classification using spatial pyramid pooling[J]. Remote Sensing Letters, 2016, 7(9): 875-884. [11] LI Y, ZHANG H, SHEN Q. Spectral-spatial classifica-tion of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1). DOI:10.3390/rs9010067. [12] LIU B, YU X C, YU A Z, et al. Spectral-spatial classifica-tion of hyperspectral imagery based on recurrent neural networks[J]. Remote Sensing Letters, 2018, 9(12): 1118-1127. [13] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014:2672-2680. [14] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[C]//Advances in Neural Information Processing Systems. Long Beach: Curran Associates Inc, 2017: 5767-5777. [15] PAN Z, YU W, YI X, et al. Recent progress on generative adversarial networks (GANs): a survey[J]. IEEE Access, 2019(7): 36322-36333. |