[1] ZHOU Q, LI Z. Experimental analysis of various types of road intersections for interchange detection[J]. Transactions in GIS, 2015,19(1):19-41. [2] 王骁,钱海忠,丁雅莉,等.采用拓扑关系与道路分类的立交桥整体识别方法[J].测绘科学技术学报,2013,30(3):324-328. [3] MACKANESS W A, MACKECHNIE G A. Automating the detection and simplification of junctions in road networks[J]. GeoInformatica, 1999,3(2):185-200. [4] 徐柱,蒙艳姿,李志林,等.基于有向属性关系图的典型道路交叉口结构识别方法[J].测绘学报,2011,40(1):125-131. [5] 马超,孙群,陈换新,等.利用路段分类识别复杂道路交叉口[J].武汉大学学报(信息科学版),2016,41(9):1232-1237. [6] 何海威,钱海忠,谢丽敏,等.立交桥识别的CNN卷积神经网络法[J].测绘学报,2018,47(3):385-395. [7] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015,521(7553):436-444. [8] 张顺,龚怡宏,王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J].计算机学报,2019,42(3):453-482. [9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence.[S.l.]:IEEE, 2016:1137-1149. [10] 马焜阳,成毅,葛文,等.利用Faster R-CNN自动识别建筑平面图功能构件的方法[J].测绘科学技术学报,2019,36(3):311-317. [11] 崔巍,杨亮亮,夏荣,等.基于Faster R-CNN算法的船舶识别检测[J].合肥工业大学学报(自然科学版),2020,43(2):182-187,223. [12] 吴晓凤,张江鑫,徐欣晨.基于Faster R-CNN的手势识别算法[J].计算机辅助设计与图形学学报,2018,30(3):468-476. [13] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV).[S.l.]:IEEE, 2015:1440-1448. [14] DENG L, YU D. Deep learning:methods and applications[J]. Foundations & Trends in Signal Processing, 2014, 7(3):197-387. [15] RAWAT W, WANG Z. Deep convolutional neural networks for image classification:a comprehensive review[J]. Neural Computation, 2017,29(9):1-98. |