[1] DING P, ZHANG Y, DENG W J, et al. A light and faster regional convolutional neural network for object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2018, 141:208-128. [2] 蔡栋, 陈焱明, 魏巍. 基于骨架特征的多光谱遥感影像飞机目标识别[J].测绘通报,2014(2):50-54. [3] 马琦, 马蔚鹏, 刘彦, 等. 基于支持向量机的图像飞机目标自动识别算法研究[J].计算机测量与控制, 2014, 22(9):2851-2852. [4] 姚远,姜志国,张浩鹏.基于层次化分类器的遥感图像飞机目标检测[J].航天返回与遥感, 2014, 35(5):88-94. [5] CHAN T H, JIA K, GAO S, et al. PCANet:a simple deep learning baseline for image classification?[J]. IEEE Transactions on Image Processing, 2015, 24(12):5017-5032. [6] COLLOBERT R, WESTON J.A unified architecture for natural language processing:deep neural networks with multitask learning[C]//International Conference on Machine Learning. Helsinki:ICML,2008:160-167. [7] BENGIO Y. Learning deep architectures for AI[M].[S.l.]:Now Publisher Inc., 2009. [8] MOHAMED A R, SAINATH T N, DAHL G, et al. Deep belief networks using discriminative features for phone recognition[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Prague:IEEE, 2011:5060-5063. [9] ZHANG F, DU B, ZHANG L. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(3):1793-1802. [10] MA X, GENG J, WANG H. Hyperspectral image classification via contextual deep learning[J]. Eurasip Journal on Image & Video Processing, 2015(1):20. [11] HU W, HUANG Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015(2):1-12. [12] 殷文斌,王成波, 袁翠, 等.一种飞机目标的遥感识别方法[J]. 测绘通报, 2017(3):37-40. [13] 邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报,2018, 47(9):1216-1227. [14] 张志远. 基于深度学习的光学遥感图像飞机检测[D].厦门:厦门大学, 2016. [15] CHEN C, LIU M Y, TUZEL O, et al.R-CNN for small object detection[C]//Asian Conference on Computer Vision. Taipei:IEEE, 2016:214-230. [16] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9):1904-1916. [17] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Santiago:IEEE, 2015. [18] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 39(6):1137-1149. [19] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. [20] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. [21] 郑志强, 刘妍妍, 潘长城, 等. 改进YOLO V3遥感图像飞机识别应用[EB/OL]. (2018-01-04)[2019-02-01].http://kns.cnki.net/kcms/detail/41.1227.TN.20180823.1037.002.html. [22] 刘学平,李玙乾,刘励,等.嵌入SENet结构的改进YOLOV3目标识别算法[EB/OL]. (2017-12-19)[2018-12-13].https://doi.org/10.19678/j.issn.1000-3428.0052861. [23] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Puerto Rico:IEEE, 2017. [24] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//IEEE Winter Conference on Applications of Computer Vision.[S.l.]:IEEE,2018. [25] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Puerto Rico:IEEE, 2017. [26] LI Z, PENG C, YU G, et al. DetNet:a backbone network for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE, 2018. |