[1] IRISH R R. Landsat 7 automatic cloud cover assessment[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4049:348-355. [2] ZHU Z, WOODCOCK C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118:83-94. [3] MONTANARO M, GERACE A, LUNSFORD A, et al. Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor[J]. Remote Sensing, 2014, 6:10435-10456. [4] ZHANG Y. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:refinements of the radiative transfer model and the input data[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D19):1-27. [5] ZHU Z, WOODCOCK C E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data:an algorithm designed specifically for monitoring land cover change[J]. Remote Sensing of Environment, 2014, 152:217-234. [6] HAGOLLE O, HUC M, PASCUAL D V, et al. A multi-temporal method for cloud detection, applied to Formosat-2, VENμS, Landsat and Sentinel-2 images[J]. Remote Sensing of Environment, 2010, 114:1747-1755. [7] ZHANG Y, GUINDON B, CIHLAR J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images[J]. Remote Sensing of Environment, 2002, 82:173-187. [8] 胡根生,陈长春,梁栋.联合云量自动评估和加权支持向量机的Landsat图像云检测[J].测绘学报,2014,43(8):848-854. [9] LEE J. A neural network approach to cloud classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28(5):846-855. [10] 付华联,冯杰,李军,等.基于随机森林的FY-2G云检测方法[J].测绘通报,2019(3):61-66. [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90. [12] LI Z W, SHEN H F, CHENG Q, et al. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:197-212. [13] DENG L, YLI D. Deep Learning:methods and applications[J]. FNT in Signal Processing, 2014, 7:197-387. [14] LI Q, CAI W, WANG X, et al. Medical image classification with convolutional neural network[C]//Proceedings of 13th international conference on control automation robotics & vision (ICARCV). Singapore:IEEE, 2014:844-848. [15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE, 2016:770-778. [16] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu:IEEE, 2017:6230-6239. [17] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich:Springer International Publishing, 2015:234-241. [18] ZOU Z, SHI Z. Ship detection in spaceborne optical image with SVD Networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):1-14. [19] KANG M, LENG X, LIN Z, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]//Proceedings of 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP). Shanghai:IEEE, 2017:1-4. |