[1] HU Y F, ZHANG Q L, ZHANG Y, et al. A deep convolu-tion neural network method for land cover mapping: a case study of Qinhuangdao, China[J]. Remote Sensing, 2018, 10(12):2053. [2] 张磊,宫兆宁,王启为,等.Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J].遥感学报,2019,23(2):313-326. [3] DASH J P, WATT M S, PEARSE G D, et al. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:1-14. [4] DENG L, MAO Z H, LI X J, et al. UAV-based multi-spectral remote sensing for precision agriculture: a comparison between different cameras[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146:124-136. [5] 戴建国,张国顺,郭鹏,等. 基于无人机遥感可见光影像的北疆主要农作物分类方法[J]. 农业工程学报,2018,34(18):122-129. [6] TU Y H, JOHANSEN K, PHINN S, et al. Measuring canopy structure and condition using multi-spectral UAS imagery in a horticultural environment[J]. Remote Sensing, 2019, 11(3):269. [7] 刘舒,朱航. 基于超高空间分辩率无人机影像的面向对象土地利用分类方法[J]. 农业工程学报,2020,36(2):87-94. [8] FISHER J R B, PORRAS E A A, DENNEDY-FRANK P J, et al. Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality[J].Remote Sensing in Ecology and Conservation, 2017,4(2):137-149. [9] LI N, XIE G D, ZHOU D M, et al. Remote sensing classification of marsh wetland with different resolution images[J]. Journal of Resources and Ecology, 2016, 7(2):107-114. [10] YE H C, HUANG W J, HUANG S Y, et al. Recognition of banana fusarium wilt based on UAV remote sensing[J].Remote Sensing, 2020,12(6):938. [11] 邱琳,卢必慧,孙玲,等.GF-1卫星影像的空间分辨率对水稻识别精度的影响[J].江苏农业学报,2019,35(1):70-75. [12] 刘婷,陈晨,范文义,等.基于不同空间尺度遥感影像估算森林叶面积指数的差异[J].应用生态学报,2019,30(5):1687-1698. [13] RONNEBERGER O, FISCHER P, BROX T. U-Net: convo-lutional networks for biomedical image segmentation[J]. Computer Vision and Pattern Recongnition, 2015: 1505.04597. [14] MAGGIORI E,TARABALKA Y, CHARPIAT G, et al. Fully convolutional neural networks for remote sensing image classification[C]// IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016. [15] 许慧敏. 基于深度学习U-Net模型的高分辨率遥感影像分类方法研究[D]. 成都:西南交通大学,2018. [16] 周志华.机器学习[M].北京:清华大学出版社,2016. [17] HAMDI Z M, BRANDMEIER M, STRAUB C. Forest damage assessment using deep learning on high resolution remote sensing data[J]. Remote Sensing, 2019,11(17):1976. |