[1] LAWIN F J, DANELLJAN M, TOSTEBERG P, et al. Deep projective 3D semantic segmentation[M]//Computer Analysis of Images and Patterns. Cham:Springer International Publishing, 2017:95-107. [2] MATIKAINEN L, KARILA K, LITKEY P, et al. Combining single photon and multispectral airborne laser scanning for land cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:200-216. [3] 李含伦, 张爱武, 刘诏, 等. 基于LiDAR波形分解的点云SVM分类方法研究[J]. 测绘通报, 2014(1):28-32. [4] 赵中阳, 程英蕾, 释小松, 等.基于多尺度特征和PointNet的LiDAR点云地物分类方法[J]. 激光与光电子学进展, 2019, 56(5):251-258. [5] LI W Z, WANG F D, XIA G S. A geometry-attentional network for ALS point cloud classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164:26-40. [6] LI X, WANG L, WANG M, et al. DANCE-NET:density-aware convolution networks with context encoding for airborne LiDAR point cloud classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:128-139. [7] WANG Z, ZHANG L, ZHANG L, et al. A deep neural network with spatial pooling (DNNSP) for 3D point cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4594-4604. [8] 释小松, 程英蕾, 赵中阳. 利用神经网络的城区机载激光雷达点云分类算法[J]. 计算机应用研究, 2020, 37(4):1256-1260. [9] 王旭娇, 马杰, 王楠楠, 等.基于图卷积网络的深度学习点云分类模型[J].激光与光电子学进展, 2019, 56(21):56-60. [10] KLOKOV R, LEMPITSKY V. Escape from cells:deep kd-networks for the recognition of 3D point cloud models[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:863-872. [11] YOUSEFHUSSIEN M, KELBE D J, IENTILUCCI E J, et al. A multi-scale fully convolutional network for semantic labeling of 3D point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143:191-204. [12] 王宏涛, 雷相达, 赵宗泽. 融合光谱信息的机载LiDAR点云三维深度学习分类方法[J]. 激光与光电子学进展, 2020, 57(12):122802. [13] WEN C, YANG L, LI X, et al. Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162:50-62. [14] WEN C, LI X, YAO X, et al. Airborne LiDAR point cloud classification with global-local graph attention convolution neural network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173:181-194. [15] MOENNING C, DODGSON N A. Fast marching farthest point sampling for implicit surfaces and point clouds[J]. Computer Laboratory Technical Report, 2003(565):1-12. [16] QI C R, SU H, MO K, et al. Pointnet:deep learning on point sets for 3d classification and segmentation[C]//Proceedings of 2017 IEEE conference on computer vision and pattern recognition. Honolulu:IEEE, 2017:652-660. [17] QI C R, YI L, SU H, et al. Pointnet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2017:5105-5114. [18] WANG Y, SUN Y, LIU Z, et al. Dynamic graph cnn for learning on point clouds[J]. Acm Transactions On Graphics (tog), 2019, 38(5):1-12. [19] LIU Y, FAN B, XIANG S, et al. Relation-shape convolu-tional neural network for point cloud analysis[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:Institute of Electrical and Electronic Engineers, 2019:8895-8904. [20] WANG L, HUANG Y, HOU Y, et al. Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:Institute of Electrical and Electronic Engineers, 2019:10296-10305. |