[1] 曹斌,邱振戈,朱述龙,等.BP神经网络遥感水深反演算法的改进[J].测绘通报,2017(2):40-44. [2] 樊彦丽.基于多特征的SVM高分辨率遥感影像分类研究[D].北京:中国地质大学(北京), 2018. [3] 张慧,王坤峰,王飞跃.深度学习在目标视觉检测中的应用进展与展望[J].自动化学报,2017, 43(8):1289-1305. [4] 侯一民,周慧琼,王政一.深度学习在语音识别中的研究进展综述[J].计算机应用研究,2017, 34(8):2241-2246. [5] 彭欣.基于深度学习的数字图书馆跨媒体语义检索方法研究[J].情报探索,2018,1(2):16-19. [6] CHEN Y, LIN Z, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [7] LUUS F P S, SALMON B P, VAN D B F, et al. Multiview deep learning for land-use classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2448-2452. [8] LI R R, LIU W J, YANG L, et al. Deep U-Net:a deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11):3954-3962. [9] 刘尚旺,崔智勇,李道义.基于U-Net网络多任务学习的遥感图像建筑地物语义分割[J].国土资源遥感,2020,32(4):74-83. [10] 郝建明.面向地理国情普查的高分辨率遥感影像半自动解译技术研究[D].重庆:重庆交通大学, 2016. [11] XU Y Y, WU L,XIE Z, et al. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters[J]. Remote Sensing, 2018, 10(1):144. [12] PENG D F, ZHANG Y J, GUAN H Y. End-to-end change detection for high resolution satellite images using improved U-Net++[J]. Remote Sensing, 2019, 11(11):1382. [13] 于佩鑫,周询,刘素红,等.东北黑土区侵蚀沟遥感影像特征提取与识别[J].遥感学报, 2018, 22(4):611-620. |