Bulletin of Surveying and Mapping ›› 2022, Vol. 0 ›› Issue (3): 101-106.doi: 10.13474/j.cnki.11-2246.2022.0085
Previous Articles Next Articles
YU Ting1,2, WANG Duo2, CHEN Qin1
Received:
2021-03-16
Revised:
2022-01-21
Online:
2022-03-25
Published:
2022-04-01
CLC Number:
YU Ting, WANG Duo, CHEN Qin. A Chinese addresses matching method based on the pseudo-semantic model[J]. Bulletin of Surveying and Mapping, 2022, 0(3): 101-106.
[1] 王静远,李超,熊璋,等.以数据为中心的智慧城市研究综述[J].计算机研究与发展, 2014, 51(2):239-259. [2] 张雪英,闾国年,杜咪,等.大数据驱动的地名信息获取与应用[J].现代测绘, 2017, 40(2):1-5. [3] 徐流畅.预训练深度学习架构下的语义地址匹配与语义空间融合模型研究[D].杭州:浙江大学, 2020. [4] 邹恩岑,曾诚,张谦,等.一种面向中文非标建筑地址标准化的自动匹配方法[J].苏州科技大学学报(自然科学版), 2019, 36(4):66-74. [5] 王方正.面向少量标记数据的中文地址分词方法研究[D].杭州:浙江大学, 2020. [6] 周海.基于条件随机场和空间推理的地理编码方法[D].郑州:信息工程大学, 2015. [7] MELO F, MARTINS B. Automated geocoding of textual documents:a survey of current approaches[J]. Transactions in GIS, 2017, 21(1):3-38. [8] GOLDBERG D W, WILSON J P, KNOBLOCK C A. From text to geographic coordinates:the current state of geocoding[J]. URISA Journal, 2007, 19(1):33. [9] 宋子辉.自然语言理解的中文地址匹配算法[J].遥感学报, 2013, 17(4):788-801. [10] WU Z, TSENG G. Chinese text segmentation for text retrieval:achievements and problems[J]. Journal of the American Society for Information Science, 1993, 44(9):532-542. [11] FUNG P, WU D. Statistical augmentation of a chinese machine-readable dictionary[M].[S. l.]:Springer Netherlands, 1995. [12] 魏金明,仲伟政.基于置信度的地址匹配方法初探[J].测绘科学, 2015, 40(1):122-125. [13] 李振星,徐泽平,唐卫清,等.全二分最大匹配快速分词算法[J].计算机工程与应用, 2002, 38(11):106-109. [14] XUE N, CONVERSE S P. Combining classifiers for Chinese word segmentation[C]//Proceedings of the First SIGHAN Workshop on Chinese Language ProcessingVolume 18. Morristown,NJ:Association for Computational Linguistics, 2002:1-7. [15] XUE N, SHEN L. Chinese word segmentation as LMR tagging[C]//Proceedings of the Second SIGHAN Workshop on Chinese Language Processing-Volume17. Morristown,NJ:Association for Computational Linguistics, 2003:176-179. [16] 王东海,赵伟,陈洁,等.基于隐Markov模型汉语词性自动标注的若干分析与改进[J].长春工业大学学报(自然科学版),2007, 28(1):48-52. [17] 王敏.基于改进的隐马尔科夫模型的汉语词性标注[D].太原:山西大学, 2007. [18] 邬伦,刘磊,李浩然,等.基于条件随机场的中文地名识别方法[J].武汉大学学报(信息科学版), 2017,42(2):150-156. [19] 何炎祥,罗楚威,胡彬尧.基于CRF和规则相结合的地理命名实体识别方法[J].计算机应用与软件, 2015, 32(1):179-185. [20] ZHENG X, CHEN H, XU T. Deep learning for Chinese word segmentation and POS tagging[C]//Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, Washington:[s. n.], 2013:647-657. [21] PEI W, GE T, CHANG B. Max-margin tensor neural network for Chinese word segmentation[C]//Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2014:293-303. [22] CHEN X, QIU X, ZHU C, et al. Gated recursive neural network for Chinese word segmentation[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). Stroudsburg,PA:Association for Computational Linguistics, 2015:1744-1753. [23] CHEN X, QIU X, ZHU C, et al. Long short-term memory neural networks for chinese word segmentation[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2015:1197-1206. [24] YAO Y, HUANG Z. Bi-directional LSTM recurrent neural network for Chinese word segmentation[C]//International Conference on Neural Information Processing.[S. l.]:Springer, Cham, 2016:345-353. [25] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]//Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2016:260-270. [26] KANG M, DU Q, WANG M. A new method of Chinese address extraction based on address tree model[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1):99-107. [27] 亢孟军,杜清运,王明军.地址树模型的中文地址提取方法[J].测绘学报, 2015, 44(1):99-107. [28] 李新放,宋转玲,陈学业,等. K叉树地址的模糊匹配研究与实现[J].测绘通报, 2018(9):126-129. [29] 史名君.非规范中文地址的智能匹配研究[D].徐州:中国矿业大学, 2020. [30] 刁兴春,谭明超,曹建军.一种融合多种编辑距离的字符串相似度计算方法[J].计算机应用研究,2010, 27(12):4523-4525. [31] SHAN S, LI Z, QIANG Y, et al. DeepAM:deep semantic address representation for address matching[C]//Web and Big Data. Cham:Springer International Publishing, 2019:45-60. [32] LIN Y, KANG M, WU Y, et al. A deep learning architecture for semantic address matching[J]. International Journal of Geographical Information Science,2020, 34(3):559-576. [33] 赵明,杜会芳,董翠翠,等.基于word2vec和LSTM的饮食健康文本分类研究[J].农业机械学报, 2017, 48(10):202-208. [34] GERS F A, SCHMIDHUBER J, CUMMINS F, et al. Learning to forget:continual prediction with LSTM[J]. Neural computation, 2000, 12(10):2451-2471. [35] 邓力.深度学习自然语言处理[M].北京:清华大学出版社,2020. [36] CHEN T, XU R, HE Y, et al. Improving sentiment analysis via sentence type classification using BiLSTMCRF and CNN[J]. Expert System with Applications, 2017, 72:221-230. |
[1] | GE Pengfei, LIU Hui, CHEN Mi, LI Yu, DING Ruili, LIU Fei. Monitoring land subsidence of Hebei section of Beijing-Xiong'an intercity railway by time-series InSAR [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 64-70. |
[2] | Lü Zheng, SUN Qun, WEN Bowei, MA Jingzhen. A self-global-best-fit road network Stroke generation method [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 93-99. |
[3] | ZHONG Qikang, WANG Zhiyi, WANG Na, XI Furui. Spatial differentiation characteristics and driving factors of landscape ecological risk in arid area of northern Shaanxi [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 100-106. |
[4] | QIANG Dexia, MA Haizheng, ZHU Ziping, GOU Yanmei. Spatial distribution and analysis of debris flow in Jishishan county of Gansu province [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 107-111,117. |
[5] | HAN Wenli, ZHANG Jixian, CHEN Haipeng, HUANG Haiying, ZHANG Libo, GE Juan, SHEN Jing, LU Yao. Discussion on quality inspection technology for new fundamental surveying and mapping [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 148-153. |
[6] | TAO XiaoJing. Security protection technology and verification analysis of geographic information data based on TEA algorithm [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 154-157,167. |
[7] | CAI Roudan. An intelligent identification method of user identity based on asynchronous trajectory [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 158-162,167. |
[8] | ZHOU Ye, LIU Yunbo, ZHENG Libo, LONG Yangjun. Precision analysis of single tree parameter extraction for multi-platform point cloud data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 168-172. |
[9] | HE Yuqi, ZENG Yixiao, CHEN Guang, CHEN Liangchao. Research on the early warning and simulation of land space planning in mountainous city from the perspective of new surveying and mapping [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 11-15. |
[10] | LUO Guowei, YE Jiayuan, WANG Jinfeng. Multi-source POI matching method based on multi-feature similarity [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 96-100. |
[11] | YAN Mingtao, QIAO Jiajun, QU Meng, ZHU Qiankun, HAN Dong. Measurement of coupling and coordination of socio-economic and ecological environment in rural villages of the Yellow River basin and analysis of influencing factors [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 101-105,116. |
[12] | ZHANG Puwei, FU Liang, WANG Guohua, LU Yannan, ZHAO Haiyun. Analysis of the site selection evaluation system for rural leisure and pension projects [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 106-110. |
[13] | HUANG He, MENG Weiming. Lane recognition of large radius circular curve based on vision [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 134-137. |
[14] | ZHANG Dingxiang, WANG Xiulian, LIU Shunxi, ZHANG Jia, CHEN Qiang, LI Shijiang. Vector rasterization method of national land use data in the third national land survey [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 138-144. |
[15] | ZENG Yuanwu, SHI Jingwen, LUO Hongming, CHENG Yingxuan. Research on construction of supervision information system for territorial spatial planning implementation involving provincial, prefectural and county levels:taking Guangdong province as an example [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 145-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||