[1] 周晓敏, 孟晓林, 张雪萍, 等.倾斜摄影测量的城市真三维模型构建方法[J].测绘科学, 2016, 41(9):159-163. [2] 杨国东, 王民水.倾斜摄影测量技术应用及展望[J].测绘与空间地理信息, 2016, 39(1):13-15. [3] AICARDI I, CHIABRANDO F, GRASSO N, et al. Uav photogrammetry with oblique images:first analysis on data acquisition and processing[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B1:835-842. [4] 张红华, 赵威成, 刘强凯. 倾斜摄影实景三维模型建筑物单体化方法研究[J]. 北京测绘, 2020, 34(3):289-291. [5] 聂赞, 文琳, 黄山, 等. 倾斜摄影的单体化建模研究[J]. 地理空间信息, 2019, 17(3):113-114, 122. [6] 陈思, 冯学兵, 刘阳.基于倾斜摄影实景三维模型单体化分类与应用[J].北京测绘, 2018, 32(4):409-414. [7] 王秋萍, 张志祥, 朱旭芳.图像分割方法综述[J]. 信息记录材料, 2019, 20(7):12-14. [8] 刘扬, 付征叶, 郑逢斌. 高分辨率遥感影像目标分类与识别研究进展[J]. 地球信息科学学报, 2015, 17(9):1080-1091. [9] BLASCHKE T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1):2-16. [10] PI Yalong, NATH N D, BEHZADAN A H. Convolutional neural networks for object detection in aerial imagery for disaster response and recovery[J]. Advanced Engineering Informatics, 2020, 43:101009. [11] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied Soft Computing, 2018, 70:41-65. [12] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:3213-3223. [13] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [14] NOGUEIRA K, DOS SANTOS J A, CANCIAN L, et al. Semantic segmentation of vegetation images acquired by unmanned aerial vehicles using an ensemble of ConvNets[C]//Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Fort Worth, TX:IEEE, 2017:3787-3790. [15] WANG Shengke, LIU Lu, QU Liang, et al. Accurate ulva prolifera regions extraction of UAV images with superpixel and CNNs for ocean environment monitoring[J]. Neurocomputing, 2019, 348:158-168. [16] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459. [17] 张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8):1068-1083. [18] WANG Panqu, CHEN Pengfei, YUAN Ye, et al. Understanding convolution for semantic segmentation[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV:IEEE, 2018:1451-1460. [19] WEI Yunchao, LIANG Xiaodan, CHEN Yunpeng, et al. Learning to segment with image-level annotations[J]. Pattern Recognition, 2016, 59:234-244. [20] WANG Juhong, LIU Bin, XU Kun. Semantic segmentation of high-resolution images[J]. Science China Information Sciences, 2017, 60(12):123101. [21] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251. [22] 曲景影, 孙显, 高鑫. 基于CNN模型的高分辨率遥感图像目标识别[J]. 国外电子测量技术, 2016, 35(8):45-50. [23] 许夙晖, 慕晓冬, 赵鹏, 等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016, 45(7):834-840. |