[1] GARG S,SÜNDERHAUF N,DAYOUB F,et al. Semantics for robotic mapping,perception and interaction: a survey[EB/OL]. 2021-03-05[2023-01-11]. https://arxiv.org/abs/2101.00443.pdf. [2] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE 2014: 580-587. [3] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision(ICCV). Santiago,Chile:IEEE,2015: 1440-1448. [4] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once: unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Vegas:IEEE,2016: 779-788. [5] REDMON J,FARHADI A. YOLO9000: better,faster,stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu:IEEE,2017: 7263-7271. [6] FARHADI A,REDMON J. Yolov3: an incremental improvement[C]//Proceedings of 2018 Computer Vision and Pattern Recognition. Berlin/Heidelberg: Springer,2018. [7] BOCHKOVSKIY A,WANG C Y,LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. 2020-08-23[2023-01-12]. https://arxiv.org/abs/2004.10934. [8] RONNEBERGER O,FISCHER P,BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI. Munich: Springer International Publishing,2015: 234-241. [9] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[EB/OL]. 2016-12-05[2023-01-11]. https://ui.adsabs.harvard.edu/abs/2016arXiv161203144L/abstract. [10] ZHENG Tu,FANG Hao,ZHANG Yi,et al. RESA: recurrent feature-shift aggregator for lane detection[EB/OL]. 2016-12-05[2023-01-11]. https://arxiv.org/abs/2101.00443.pdf. [11] PAN X,SHI J,LUO P,et al. Spatial as deep: Spatial CNN for traffic scene understanding[C]//Proceedings of 2018 AAAI Conference on Artificial Intelligence.[S.l.]:AAAI,2018. [12] NEVEN D,DE BRABANDERE B,GEORGOULIS S,et al. Towards end-to-end lane detection: an instance segmentation approach [C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE,2018. [13] CARUANA R. Multitask learning: a knowledge-based source of inductive bias1[C]//Proceedings of the 10th International Conference on Machine Learning. Amherst:[s.n.],1993: 41-48. [14] MA J,ZHAO Z,YI X,et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]//Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. [S.l.]:ACM Press,2018: 1930-1939. [15] QIN Z,CHENG Y,ZHAO Z,et al. Multitask mixture of sequential experts for user activity streams[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. [S.l.]:ACM Press,2020: 3083-3091. [16] ZHAO Z,HONG L,WEI L,et al. Recommending what video to watch next: a multitask ranking system[C]//Proceedings of the 13th ACM Conference on Recommender Systems[S.l.]:ACM Press,2019: 43-51. [17] REN Shaoqing,HE Kaiming,GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [18] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Vegas:IEEE,2016: 770-778. [19] DUAN K,XIE L,QI H,et al. Location-sensitive visual recognition with cross-iou loss[EB/OL]. 2021-04-05[2023-01-11]. https://arxiv.org/abs/2101.00443.pdf. [20] TEICHMANN M,WEBER M,ZOELLNER M,et al. MultiNet: real-time joint semantic reasoning for autonomous driving[C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE,2018: 1013-1020. [21] WUD,LIAO M W,ZHANG W T,et al. Yolop: You only look once for panoptic driving perception[J]. Machine Intelligence Research,2022(6): 550-562. [22] VU D,NGO B,PHAN H. Hybridnets: end-to-end perception network[EB/OL]. 2016-12-05[2023-01-11]. https://doi.org/10.48550/arXiv.2203.09035. [23] YU F,CHEN H,WANG X,et al. Bdd100k: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE,2020: 2636-2645. [24] HE K,ZHANG X,REN S,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9): 1904-1916. [25] ZHAO H,SHI J,QI X,et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE conference on computer vision and pattern recognition. Honolulu:IEEE,2017: 2881-2890. |