[1] 肖文.基于高光谱视觉的建筑垃圾多特征检测方法及实验研究[D].深圳:华侨大学,2021. [2] 徐隆鑫,孙永华,吴文欢,等. 基于无人机高光谱影像的建筑垃圾分类研究[J].光谱学与光谱分析,2022,42(12): 3927-3934. [3] 许文稼,蒋庆斌,刘钢洋.基于机器视觉和深度学习的建筑垃圾智能识别研究[J].电子器件,2022,45(6): 1489-1496. [4] 谢馨娴,岳彩荣.多特征组合的TM影像EnMap-Box土地利用分类[J].测绘地理信息,2019,44(3):109-112. [5] 王森彪,许泽胜,陈佳蕊.北京市建筑垃圾处置利用发展历程研究[J].应用化工,2022,51(3): 777-780. [6] 魏传文.基于多源数据的油菜冻害遥感机理与方法研究[D].杭州: 浙江大学,2018. [7] 段辉明,卫东,葛成辉,等.遥感图像与地理坐标匹配的快速算法[J].中国图象图形学报,2004,9(1):87-92. [8] 徐隆鑫,孙永华,何仕俊,等.基于不同光谱匹配算法的无人机高光谱遥感影像建筑垃圾分类研究[J].首都师范大学学报(自然科学版),2021,42(6):50-56. [9] 李明泽,张培赢.基于SAM算法的遥感影像湿地植被分类[J].森林工程,2015,31(2): 8-13. [10] FERNÁNDEZ-D,CERNADAS E,BARRO S,et al.Do we need hundreds of classifiers to solve real world classification problems[J].The Journal of Machine Learning Research,2014,15(1):3133-3181. [11] BIRTH G S,MCVEY G R.Measuring the color of growing turf with a reflectance spectrophotometer[J].Agronomy Journal,1968,60(6): 640-643. [12] TUCKER C J.Red and photographic infrared linear combinations for monitoring vegetation[J].Remote Sensing of Environment,1979,8(2): 127-150. [13] GENUER R,POGGI J M,TULEAU-MALOT C.Variable selection using random forests[J].Pattern Recognition Letters,2010,31(14): 2225-2236. [14] SANDRI M,ZUCCOLOTTO P.Variable selection using random forests[J].Computational Stetistics&Data Analysis,2013,60:50-69. [15] MCFEETERS S K.The use of the normalized difference water index (NDWI) in the delineation of open water features[J].International Journal of Remote Sensing,1996,17(7): 1425-1432. [16] 夏盈,厉恩华,王学雷,等.基于特征优选的随机森林算法在湿地信息提取中的应用——以湖北洪湖湿地自然保护区为例[J].华中师范大学学报(自然科学版),2021,55(4):639-648. [17] CUTLER A,CUTLER D R,STEVENS J R.Random forests[M]//Ensemble Machine Learning.New York: Springer,2012: 157-175. |