[1] HUCK A, GUILLAUME M. Asymptotically Cfar-Unsupervised Target Detection and Discrimination in HyperspectralImages with Anomalous-Component Pursuit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 3980-3991. [2] DAVIDSON C E, BEN-DAVID A. On the Use of Covariance and Correlation Matrices in Hyperspectral Detection[C]//2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).Washington, DC: IEEE, 2011: 1-6. [3] KHAZAI S, SAFARI A, MOJARADI B, et al. An Approach for Subpixel Anomaly Detection in HyperspectralImages[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,6(2): 769-778. [4] MNOZ-MAR J, BOVOLO F, GMEZ-CHOVA L, et al. Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3188-3197. [5] ZHAO L Y, ZHANG K, LI X R. Kernel Signature Space Orthogonal Projection for Target Detection in HyperspectralImagery[J]. Journal of Remote Sensing, 2011, 15(1): 13-28. [6] MATTEOLI S, ACITO N, DIANI M, et al. An Automatic Approach to Adaptive Local Background Estimation and Suppression in Hyperspectral Target Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 790-800. [7] KWON H,GURRAM P. Optimal Kernel Bandwidth Estimation for Hyperspectral Kernel-Based Anomaly Detection[C]//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu: IEEE, 2010: 2812-2815. [8] CHEN Y, NASRABADI N M, TRAN T D. Sparse Representation for Target Detection in HyperspectralImagery[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 629-640. [9] CHEN Y, NASRABADI N M, TRAN T D. Simultaneous Joint Sparsity Model for Target Detection in HyperspectralImagery[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 676-680. [10] CHEN Y, NASRABADI N M, TRAN T D. Kernel Sparse Representation for Hyperspectral Target Detection[C]//2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Munich: IEEE, 2012: 7484-7487. [11] KRUSKAL J B. Three-way Arrays: Rank and Uniqueness of Trilinear Decompositions, with Application to Arithmetic Complexity and Statistics[J]. Linear Algebra and Its Applications, 1977, 18(2): 95-138. [12] TUCKER L R. Some Mathematical Notes on Three-Mode Factor Analysis[J]. Psychometrika, 1966, 31(3): 279-311. [13] KIERS H A L. Towards a Standardized Notation and Terminology in Multiwayanalysis[J]. Journal of Chemometrics, 2000, 14(3): 105-122. [14] ZHANG T, GOLUB G H. Rank-one Approximation to High Order Tensors[J]. SIAM Journal on Matrix Analysis and Applications, 2001, 23(2): 534-550. [15] CHEN Y, NASRABADI N M, TRAN T D. HyperspectralImage Classification Using Dictionary-based Sparse Representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985. [16] SUN J M, TAO D C, PAPADIMITRIOU S, et al. Incremental Tensor Analysis: Theory and Applications[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2008, 2(3): 11. [17] TROPP J A, GILBERT A C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. [18] DAI W, MILENKOVIC O. Subspace Pursuit for Compressive Sensing Signal Reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. [19] IEEE. 2013 IEEE GRSS Data Fusion Contest[EB/OL].2012-02-03.[2013-01-06].http://sites.ieee.org/spotlight/ieee-grss-announces-plans-for-2013-data-fusion-contest/. [20] IEEE. 2014 IEEE GRSS Data Fusion Contest[EB/OL].2010-05-05.[2011-06-07].http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/. |