测绘通报 ›› 2017, Vol. 0 ›› Issue (1): 106-111.doi: 10.13474/j.cnki.11-2246.2017.0023

• 技术交流 • 上一篇    下一篇

基于DInSAR与概率积分法的铁路变形监测与预测

郑美楠1, 刘沂轩2,3, 邓喀中1, 赵晨亮4, 冯军5   

  1. 1. 中国矿业大学环境与测绘学院, 江苏 徐州 221116;
    2. 江苏省水文水资源勘测局徐州分局, 江苏 徐州 221006;
    3. 中国矿业大学资源与地球科学学院, 江苏 徐州 221116;
    4. 铁道第三勘察设计院集团有限公司航遥测绘分院, 天津 300000;
    5. 山西省煤炭地质115勘查院, 山西 大同 037000
  • 收稿日期:2016-06-14 修回日期:2016-11-01 出版日期:2017-01-25 发布日期:2017-02-06
  • 作者简介:郑美楠(1991-),男,硕士生,主要研究方向为DInSAR、时序InSAR与变形监测。E-mail:1099199233@qq.com

Monitoring and Prediction of Railway Deformation based on DInSAR and Probability Integral Method

ZHENG Meinan1, LIU Yixuan2,3, DENG Kazhong1, ZHAO Chenliang4, FENG Jun5   

  1. 1. School of Environmental Science and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China;
    2. Jiangsu Province Hydrology and Water Resources Investigation Bureau, Xuzhou 221006, China;
    3. School of Resources and Geosciences, China University of Mining & Technology, Xuzhou 221116, China;
    4. Dept. of Remote Sensing and Surveying and Mapping of the Third Surveying and Design Institute Ltd. Co., Tianjin 300000, China;
    5. Shanxi Coal Geological Prospecting Institute 115, Datong 037000, China
  • Received:2016-06-14 Revised:2016-11-01 Online:2017-01-25 Published:2017-02-06

摘要: 为掌握采空区上方铁路实时动态变形及变形趋势,本文提出了合成孔径雷达差分干涉技术(DInSAR)与概率积分法相结合的方法。首先利用DInSAR技术对采空区进行了监测,并利用水准数据对DInSAR结果进行了验证;然后基于DInSAR结果结合概率积分法反算参数,并对参数进行了修正,得到工作面充分采动时的下沉参数;最后利用修正的参数对铁路的变形进行了预测。结果表明两者的结合可以有效地对铁路等线性构筑物进行监测与预测。

关键词: DInSAR, 变形监测, 概率积分法, 采空区

Abstract: In order to obtain real-time dynamic deformation and deformation trend of railway above goaf,a method based on the combination of the Differential SAR Interferometry (DInSAR) technique and probability integral method was presented in this paper. Firstly,the DInSAR technology was used to monitor the goaf,and the monitor results were compared with leveling data.Then,the probability integral method parameters were calculated using DInSAR monitoring results, and modified the prediction parameters into sufficiency mining condition.Finally, the deformation of the railway was predicted using the modified parameters. The results verified the combination of both can effectively monitor and predict railways and other linear structures.

Key words: DInSAR, deformation monitor, probability integral method, goaf

中图分类号: