测绘通报 ›› 2019, Vol. 0 ›› Issue (2): 71-75.doi: 10.13474/j.cnki.11-2246.2019.0046

• 学术研究 • 上一篇    下一篇

多源信息多尺度视角的南京市街道级人口模拟研究

许玲丽, 颜梅春   

  1. 河海大学地球科学与工程学院, 江苏 南京 211100
  • 收稿日期:2018-08-27 修回日期:2018-11-14 出版日期:2019-02-25 发布日期:2019-03-05
  • 作者简介:许玲丽(1992-),女,硕士生,研究方向为遥感与地理信息系统应用。E-mail:2282672148@qq.com
  • 基金资助:

    国家自然科学基金(41271538)

Population simulation study of Nanjing streets from multi-source information and multi-scale perspective

XU Lingli, YAN Meichun   

  1. School of Earth Science and Engineering, Hohai University, Nanjing 211100, China
  • Received:2018-08-27 Revised:2018-11-14 Online:2019-02-25 Published:2019-03-05

摘要:

人口是重要的社会和生态环境因素,掌握人口信息有利于资源配置和环境管理。本文以南京市的街道级行政区域作为基本对象单元,分别从市级、市郊级和城市化度3个尺度,人口总量和人口密度2个方面,使用NPP/VⅡRS夜间灯光数据、大数据中的关注点POI数据、Landsat 8卫星OLI影像的建筑用地指数IBI,进行了人口模拟研究。结果如下:①在市级层面,人口密度模拟效果优于人口总量的,POI数据模拟效果最佳,确定性系数为0.87,其次是建筑用地指数0.81,夜间灯光数0.77;②在市郊级层面,郊区的人口密度拟合效果优于市区的;③在城市化度方面,中度城市化的街道人口密度与NPP/VⅡRS的幂函数关系最佳,确定性系数为0.99,低度和高度城市化的街道人口密度与POI的对数关系拟合效果相对好些,确定性系数分别为0.65和0.44;中度和低度城市化街道的人口总量与3个因素数据的多元线性回归模型效果最佳,确定性系数分别为0.91和0.78。结果说明中度城市化街道的人口模拟效果最好。本文研究拓展了城市人口估算的广度和深度,可为相关工作提供思路上的借鉴。

关键词: NPP/VIIRS影像, IBI指数, POI数据, 城市化度, 人口模拟, 街道级单元, 南京市

Abstract:

Population is an important social and ecological environmental factor, and mastering population information is beneficial to resource allocation and environmental management. This paper takes Nanjing's street-level administrative region as the basic object unit, and uses NPP/VⅡ RS night light data, POI data in big data and IBI of LANDSAT 8 satellite OLI image from the three scales of city level, suburb level and urbanization level, population size and population density. The results show that at the municipal level, the effect of population density simulation is better than that of the total population, POI data simulation is the best, with certainty coefficient of 0.87, followed by building land index of 0.81 and night light number of 0.77. At the suburban level, the fitting effect of the population density in the suburbs is better than that in the urban areas. In terms of urbanization degree, the power function relationship between the street population density of moderate urbanization and NPP/VⅡRS is the best, with the certainty coefficient of 0.99, while the logarithmic relationship between the street population density of low and high urbanization and POI is better, with the certainty coefficients of 0.65 and 0.44, respectively. The multivariate linear regression model of the total population and the data of three factors in the medium and low urbanization streets has the best effect, with the certainty coefficients of 0.91 and 0.78, respectively. It shows that the population simulation effect of moderately urbanized streets is the best. This study expands the breadth and depth of urban population estimation and can provide a reference for related work.

Key words: NPP/VIIRS image, IBI index, POI data, degree of urbanization, population modelling, street level units, Nanjing

中图分类号: