[1] SHI H, CHEN L, BI F, et al. Accurate urban area detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1948-1952. [2] OZDARICI-OK A, OK A, SCHINDLER K. Mapping of agricul-tural crops from single high-resolution multispectral images——data-driven smoothing vs. parcel-based smoothing[J]. Remote Sensing, 2015, 7(5):5611-5638. [3] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).[S.l.]:IEEE, 2017:6517-6525. [4] 张富凯, 杨峰, 李策. 基于改进YOLOv3的快速车辆检测方法[J]. 计算机工程与应用, 2019, 55(2):18-26. [5] 姚群力,胡显,雷宏.深度卷积神经网络在目标检测中的研究进展[J].计算机工程与应用,2018,54(17):1-9. [6] 谢林江,季桂树,彭清,等.改进的卷积神经网络在行人检测中的应用[J].计算机科学与探索,2018,12(5):708-718. [7] 许夙晖, 慕晓冬, 赵鹏,等.利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016,45(7):834-840. [8] HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.[S.l.]:IEEE, 2017:2961-2969. [9] HU F, XIA G S, HU J, et al. Transferring deep convo-lutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707. [10] HU F, TONG X, XIA G S, et al. Delving into deep representations for remote sensing image retrieval[C]//Proceedings of IEEE the 13th International Conference on Signal Processing (ICSP).[S.l.]:IEEE, 2016:198-203. [11] HUANG B, ZHAO B, SONG Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J]. Remote Sensing of Environment, 2018, 214:73-86. [12] CHAKRABORTY S, BALASUBRAMANIAN V, SUN Q, et al. Active batch selection via convex relaxations with guaranteed solution bounds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10):1945-1958. [13] 王振国, 陈宏宇, 徐文明. 利用DCNN融合特征对遥感图像进行场景分类[J].电子设计工程,2018,26(1):189-193. [14] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444. [15] 韩丽燕. 基于散焦测距的几何尺寸测量技术研究[D]. 太原:中北大学, 2011. |