测绘通报 ›› 2021, Vol. 0 ›› Issue (2): 54-58.doi: 10.13474/j.cnki.11-2246.2021.0043

• 学术研究 • 上一篇    下一篇

面向对象的高分辨率遥感影像建设用地变化监测

李悦, 张敏   

  1. 武汉大学遥感信息工程学院, 湖北 武汉 430079
  • 收稿日期:2020-07-05 修回日期:2020-09-06 发布日期:2021-03-09
  • 通讯作者: 张敏。E-mail:007zhangmin@whu.edu.cn
  • 作者简介:李悦(1997-),男,硕士,主要研究方向为摄影测量与遥感。E-mail:liyue0058@whu.edu.cn
  • 基金资助:
    城市空间信息工程北京市重点实验室开放研究课题(2020101)

Object-oriented construction land change detection from high- resolution remote sensing image

LI Yue, ZHANG Min   

  1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2020-07-05 Revised:2020-09-06 Published:2021-03-09

摘要: 建设用地变化监测对城市可持续发展具有十分重要的意义,为准确提取建设用地的变化信息,本文提出了一种结合旧时期土地利用矢量数据、随机森林及模糊C均值聚类算法的建设用地变化监测方法。首先基于旧时期土地利用矢量数据,将建设用地变化监测分为建成区与非建成区建设用地变化监测;然后进行面向对象分割、基于对象遥感影像光谱、GLCM纹理及形状特征提取;最后针对不同场景,结合随机森林或模糊C均值聚类算法进行变化监测。试验结果验证了在旧时期土地利用矢量数据的辅助下,所提方法有效提高了复杂场景下建设用地的变化信息提取精度。

关键词: 建设用地, 变化监测, 面向对象, 随机森林, 模糊C均值聚类

Abstract: Change detection of construction land is of great significance to the sustainable development of cities. To extract the change information of construction land accurately, this paper proposes a novel construction land change detection method by combining old-time land use vector data, random forest and fuzzy C-means clustering algorithm. According to the prior knowledge provided by the old land use vector data, the construction land is first divided into built-up area construction land and non-built-up area construction land for change detection. Then, object-oriented segmentation is used and various features of the objects, including spectral, GLCM texture, and shape are extracted from high spatial resolution remote sensing images. After applying a local mean assignment and a normalization, multiple feature sets of objects are obtained. Finally, random forest or fuzzy C-means clustering algorithm is employed to achieve the final change detection result in different scene. Our experiments demonstrate that, the proposed method can effectively improve the extraction of change information of construction land in complex scenes with high performance.

Key words: construction land, change detection, object-oriented, random forest, fuzzy C-means

中图分类号: