测绘通报 ›› 2022, Vol. 0 ›› Issue (5): 67-73.doi: 10.13474/j.cnki.11-2246.2022.0143

• 学术研究 • 上一篇    下一篇

端到端堆叠沙漏网络的遥感影像建筑物轮廓重构

张兴忆, 李佳田, 杨汝春, 陆大进, 张泽龙, 杨超   

  1. 昆明理工大学国土资源工程学院, 云南 昆明 650093
  • 收稿日期:2021-05-19 修回日期:2022-02-24 发布日期:2022-06-08
  • 作者简介:张兴忆(1997-),女,硕士生,研究方向为计算机视觉。E-mail:1823460533@qq.com通信简介:李佳田。E-mail:ljtcx@163.com
  • 基金资助:
    国家自然科学基金(41561082)

Reconstruction of remote sensing image building contour based on end-to-end stacked hourglass network

ZHANG Xingyi, LI Jiatian, YANG Ruchun, LU Dajin, ZHANG Zelong, YANG Chao   

  1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2021-05-19 Revised:2022-02-24 Published:2022-06-08

摘要: 针对如何以端到端可训练的方式重构建筑物轮廓的问题,本文提出了一种端到端多残差模块堆叠沙漏网络的建筑物轮廓重构方法。首先,采用多残差模块堆叠沙漏网络提取建筑物角点和边缘特征;其次,利用角点检测模块匹配对应角点的相对位置,以获取候选角点;然后,通过线段采样将候选角点生成候选轮廓线;最后,线验证模块利用候选线段及多残差模块堆叠沙漏网络得到特征图,并验证每个线段是否为建筑物轮廓线,以获得建筑物轮廓重构结果。试验结果表明,在SpaceNet建筑物数据集上,本文方法能检测出建筑物角点及边缘,并有效实现了以端到端可训练的方式重构建筑物轮廓。

关键词: 建筑物轮廓重构, 堆叠沙漏网络, 残差模块, 角点检测, 线段采样

Abstract: Considering the problem that how to reconstruct building contour in an end-to-end trainable way, a method of building contour reconstruction based on end-to-end and multi-residual module stacked hourglass network is proposed. Firstly, the multi-residual module stacked hourglass network is used to extract features of buildings' corners and edges. Secondly, the corners detection module is used to match the relative positions of the corresponding corners to obtain candidate corners, and then the candidate corners are sampled by line sampling module to generate candidate contour lines. Finally, the line verification module used candidate contour lines and feature map obtained by stacked hourglass network verify whether each line segment is a building contour, so as to obtain the result of building contour reconstruction. Experimental results show that on SpaceNet building data set, this method can detect the corners and edges of buildings, and effectively reconstruct the building contour in an end-to-end trainable way.

Key words: building contour reconstruction, stacked hourglass network, residual module, corner detection, line segment sampling

中图分类号: