[1] 张勤,黄观文,杨成生.地质灾害监测预警中的精密空间对地观测技术[J].测绘学报, 2017, 46(10):1300-1307. [2] 朱庆,曾浩炜,丁雨淋,等.重大滑坡隐患分析方法综述[J].测绘学报, 2019, 48(12):1551-1561. [3] DOU Jie, YUNUS A P, BUI D T, et al. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan[J]. Landslides, 2020, 17(3):641-658. [4] 黄佳璇.基于PSInSAR蠕动型滑坡动态监测及区域稳定性分析[D].北京:北京科技大学, 2018. [5] ABDO H G. Assessment of landslide susceptibility zonation using frequency ratio and statistical index:a case study of Al-Fawar Basin, Tartous, Syria[J]. International Journal of Environmental Science and Technology, 2022, 19(4):2599-2618. [6] CHEN Wenwu, ZHANG Shuai. GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling[J]. CATENA, 2021, 203:105344. [7] BUI D T, TUAN T A, KLEMPE H, et al. Spatial prediction models for shallow landslide hazards:a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J]. Landslides, 2016, 13(2):361-378. [8] 肖湘文,沈校熠,柯长青,等.基于Sentinel-1A数据的多种机器学习算法识别冰山的比较[J].测绘学报, 2020, 49(4):509-521. [9] 刘坚,李树林,陈涛.基于优化随机森林模型的滑坡易发性评价[J].武汉大学学报(信息科学版), 2018, 43(7):1085-1091. [10] 黄露.基于机器学习的汶川震区滑坡灾害气象预警模型研究[J].测绘学报, 2020, 49(2):267. [11] DOU Jie, YUNUS A P, TIEN BUI D, et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 2019, 662:332-346. [12] PIACENTINI D, DEVOTO S, MANTOVANI M, et al. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI):an example from the northwestern coast of Malta[J]. Natural Hazards, 2015, 78(1):681-697. [13] CIAMPALINI A, RASPINI F, LAGOMARSINO D, et al. Landslide susceptibility map refinement using PSInSAR data[J]. Remote Sensing of Environment, 2016, 184:302-315. [14] ZHAO Fumeng, MENG Xingmin, ZHANG Yi, et al. Landslide susceptibility mapping of Karakorum highway combined with the application of SBAS-InSAR technology[J]. Sensors (Basel, Switzerland), 2019, 19(12):2685. [15] TIEN BUI D, SHAHABI H, SHIRZADI A, et al. Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands, Malaysia[J]. Remote Sensing, 2018, 10(10):1527. [16] 陈银.融入PSInSAR的318国道拉萨段滑坡敏感性评价[D].成都:西南交通大学, 2018. [17] SHEN Chaoyong, FENG Zhongke, XIE Chou, et al. Refinement of landslide susceptibility map using persistent scatterer interferometry in areas of intense mining activities in the Karst region of southwest China[J]. Remote Sensing, 2019, 11(23):2821. [18] HUANG Jiaxuan, XIE Mowen, ATKINSON P M. Dynamic susceptibility mapping of slow-moving landslides using PSInSAR[J]. International Journal of Remote Sensing, 2020, 41(19):7509-7529. [19] 程海琴.时序雷达干涉测量探测汶川地震龙门山区滑坡的时空分布特征[J].测绘学报, 2019, 48(2):265. [20] SUN Q, ZHANG L, DING X L, et al. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis[J]. Remote Sensing of Environment, 2015, 156:45-57. [21] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874. [22] HU Jun, LIU Jihong, LI Zhiwei, et al. Estimating three-dimensional coseismic deformations with the SM-VCE method based on heterogeneous SAR observations:selection of homogeneous points and analysis of observation combinations[J]. Remote Sensing of Environment, 2021, 255:112298. [23] FRATTINI P, CROSTA G, CARRARA A. Techniques for evaluating the performance of landslide susceptibility models[J]. Engineering Geology, 2010, 111(1-4):62-72. [24] LIU Guang, ZBIGNIEW P, STEFANO S, et al. Land surface displacement geohazards monitoring using multi-temporal InSAR techniques[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1):77-87. |