测绘通报 ›› 2023, Vol. 0 ›› Issue (7): 136-141,159.doi: 10.13474/j.cnki.11-2246.2023.0214

• 技术交流 • 上一篇    下一篇

改进U-Net模型支持下的高密度激光点云在沥青道路病害识别中的应用

赵丽凤, 王勇, 王晓静, 任传斌, 徐鹏宇   

  1. 北京城建勘测设计研究院有限责任公司, 北京 100101
  • 收稿日期:2022-10-28 修回日期:2023-06-21 出版日期:2023-07-25 发布日期:2023-08-08
  • 作者简介:赵丽凤(1984-),女,硕士,高级工程师,主要从事算法研究和数据分析方面的研究。E-mail:252794593@qq.com

Application of high-density laser point cloud supported by improved U-Net model in asphalt road disease identification

ZHAO Lifeng, WANG Yong, WANG Xiaojing, REN Chuanbin, XU Pengyu   

  1. Beijing Urban Construction Survey and Design Institute Co., Ltd., Beijing 100101, China
  • Received:2022-10-28 Revised:2023-06-21 Online:2023-07-25 Published:2023-08-08

摘要: 现有的神经网络模型能在一定程度上实现自动识别路面病害,但在实际应用中,检测准确率无法满足道路安全运维的需求,容易出现病害的漏检和误检。针对上述问题,本文提出了一种融合灰度图像和深度图像的U-Net改进模型。首先利用深度图特征,实现自动剔除无病害数据,减轻模型的运算量;然后在传统的U-Net模型结构基础上加入全局上下文模块,在实现网络轻量化的基础上提升了网络性能;最后加入路面深度图高程信息,使模型的训练数据由一维变为二维。基于病害范围与路面深度图,获取路面病害深度参数。试验结果表明,本文提出的融合灰度图像和深度图像的U-Net改进模型在全局识别准确率、精准率、召回率、综合评价指标和mIoU指标上分别为99.09%、84.69%、81.64%、91.67%和84.58%,均高于其他两种同时进行测试的模型。在路面病害检测结果中,本文方法比其他4种模型提高了99.07%。因此,本文算法可以用于有噪声干扰的复杂场景,且能够平滑、高效地提取路面裂缝,具有较强的稳健性,可为后续的路面修复工作提供重要参考。

关键词: 道路病害, 三维点云, 深度图像, 改进的U-Net模型

Abstract: The neural network model can automatically identify road defects,however the detection accuracy can not meet the needs of road safety operation and maintenance in practical applications, and it is easy to cause missed detection and false detection of diseases. In response to the above problems, this paper proposes an improved U-Net model that combines grayscale images and depth images.Firstly, the data statistics method based on the depth map is used to automatically eliminate the disease-free data and reduce the computational complexity of the model. Secondly, the global context module is added to the traditional U-Net model structure to realize a lightweight network and improve the network performance on this basis. Finally, the elevation information of the road depth map is added to change the training data of the model from one-dimensional to two-dimensional.Based on the disease range and the pavement depth map, the pavement disease depth parameters are obtained.The results show that the improved U-Net model proposed in this paper, which fuses grayscale images and depth images has global recognition accuracy, accuracy, recall rate, and comprehensive evaluation index and mIoU indicators are 99.09%, 84.69%, 81.64%, 91.67% and 84.58%, respectively, which are higher than the other two models tested at the same time. In the test results of crack disease, This paper based on the improved U-Net model of grayscale image and depth map is 99.07%,which is higher than the other four models.Experiments show that this paper based on the improved U-Net network-based pavement disease identification and extraction algorithm can be used in complex scenes with noise interference. It can extract pavement cracks smoothly and efficiently, and has strong robustness. The algorithm proposed in this paper can provide an important reference for subsequent pavement repair work.

Key words: pavement diseases, 3D point cloud, depth image, improved U-Net model

中图分类号: