测绘通报 ›› 2023, Vol. 0 ›› Issue (11): 54-60.doi: 10.13474/j.cnki.11-2246.2023.0327
李朋朋1,2, 刘纪平1,2, 王勇1,2, 罗安2,3, 桑瑜3, 闫雪峰2
收稿日期:
2023-02-17
发布日期:
2023-12-07
通讯作者:
刘纪平。E-mail:liujp@casm.ac.cn
作者简介:
李朋朋(1994—),男,博士生,研究方向为互联网地理大数据分析挖掘。E-mail:lipengpeng@my.swjtu.edu.cn
基金资助:
LI Pengpeng1,2, LIU Jiping1,2, WAGN Yong1,2, LUO An2,3, SANG Yu3, YAN Xuefeng2
Received:
2023-02-17
Published:
2023-12-07
摘要: 多源POI位置融合是实现地理空间数据匹配融合的关键技术之一。然而,由于不同POI数据源之间位置编码的差异及定位误差,导致位置融合更加困难。本文提出了一种顾及地址语义和地理空间特征的多源POI位置融合方法。首先,通过TextRCNN和图注意力网络提取地址属性的语义特征;然后,使用多层感知机提取位置属性的地理空间特征;最后,基于自注意力机制通过特征聚合实现多源POI位置融合,并对成都市百度地图、腾讯地图和高德地图的POI数据进行试验验证。结果表明,该方法显著优于现有方法,平均位置融合精度优于12 m。
中图分类号:
李朋朋, 刘纪平, 王勇, 罗安, 桑瑜, 闫雪峰. 顾及地址语义和地理空间特征的多源POI位置融合[J]. 测绘通报, 2023, 0(11): 54-60.
LI Pengpeng, LIU Jiping, WAGN Yong, LUO An, SANG Yu, YAN Xuefeng. Multi-source POI location fusion considering address semantics and geospatial features[J]. Bulletin of Surveying and Mapping, 2023, 0(11): 54-60.
[1] HUANG Haosheng,GARTNER G,KRISP J M,et al.Location based services: ongoing evolution and research agenda[J].Journal of Location Based Services,2018,12(2): 63-93. [2] 池娇,焦利民,董婷,等.基于POI数据的城市功能区定量识别及其可视化[J].测绘地理信息,2016,41(2): 68-73. [3] 谷岩岩,焦利民,董婷,等.基于多源数据的城市功能区识别及相互作用分析[J].武汉大学学报(信息科学版),2018,43(7): 1113-1121. [4] TU Wei,ZHU Tingting,XIA Jizhe,et al.Portraying spatial dynamics of urban vibrancy using multisource urban big data: a comparative study in Shenzhen[J].Computers Environment and Urban Systems,2019,80: 101428. [5] LIU Shaojun,ZHANG Long.Urban vitality area identification and pattern analysis from the perspective of time and space fusion[J].Sustainability,2019,11(15): 4032. [6] DING Ruifeng,CHEN Zhenzhong.RecNet: a deep neural network for personalized POI recommendation in location-based social networks[J].International Journal of Geographical Information Science,2018,32(8): 1631-1648. [7] 任星怡,宋美娜,宋俊德.基于用户签到行为的兴趣点推荐[J].计算机学报,2017,40(1): 28-51. [8] NOVACK T,PETERS R,ZIPF A.Graph-based matching of points-of-interest from collaborative geo-datasets[J].International Journal of Geo-Information,2018,7(3): 117. [9] LI P,LIU J,LUO A,et al.Deep learning method for Chinese multisource point of interest matching[J].Computers,Environment and Urban Systems,2022,96: 101821. [10] MILIAS V,PSYLLIDIS A.Assessing the influence of point-of-interest features on the classification of place categories[J].Computers,Environment and Urban Systems,2021,86: 101597. [11] XU Liuchang,DU Zhenhong,MAO Ruichen,et al.GSAM: a deep neural network model for extracting computational representations of Chinese addresses fused with geospatial feature[J].Computers Environment and Urban Systems,2020,81(2): 101473. [12] 江洲,李琦.地理编码(Geocoding)的应用研究[J].地理与地理信息科学,2003,19(3): 22-25. [13] 吴张峰,夏兰芳.多源异构POI融合方法及应用[J].测绘通报,2018(3): 143-146. [14] 陈瑞.基于多源POI数据的匹配融合方法研究[D].兰州: 兰州交通大学,2014. [15] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8): 1735-1780. [16] SANCHEZ-LENGELING B,REIF E,PEARCE A,et al.A gentle introduction to graph neural networks[J].Distill,2021,6(9): e33. [17] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2023-02-10].https://arxiv.org/abs/1609.02907. [18] VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[EB/OL].[2023-02-10].https://arxiv.org/abs/1710.10903. [19] HAMILTON W L,YING R,LESKOVEC J.Inductive representation learning on large graphs[EB/OL].[2023-02-10].https://arxiv.org/abs/1706.02216. [20] LI Pengpeng,LUO An,LIU Jiping,et al.Bidirectional gated recurrent unit neural network for Chinese address element segmentation[J].International Journal of Geo-Information,2020,9(11): 635. [21] LAI S,XU L,LIU K,et al.Recurrent convolutional neural networks for text classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI,2015. [22] HORNIK K,STINCHCOMBE M,WHITE H.Multilayer feedforward networks are universal approximators[J].Neural Networks,1989,2(5): 359-366. [23] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[EB/OL].[2023-02-10].https://arxiv.org/abs/1706.03762. [24] ZHANG Ye,WALLACE B.A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification[EB/OL].[2023-02-10].https://arxiv.org/abs/1510.03820. [25] DEVLIN J,CHANG Mingwei,LEE K,et al.BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL].[2023-02-10].https://arxiv.org/abs/1810.04805. [26] LIU Yinhan,OTT M,GOYAL N,et al.RoBERTa: a robustly optimized BERT pretraining approach[EB/OL].[2023-02-10].https://arxiv.org/abs/1907.11692. |
[1] | 杨延晨, 周超, 施佳湄. 基于卷积神经网络的区域滑坡易发性评价:以三峡库区万州区为例[J]. 测绘通报, 2023, 0(11): 1-6. |
[2] | 张天颖, 史明泉, 崔丽珍, 秦岭. 融合CNN和CapsNet的Wi-Fi室内定位方法[J]. 测绘通报, 2023, 0(11): 69-74,121. |
[3] | 王葱, 潘均, 孙尚宇, 宋伟东. 基于双目结构光技术的路面坑槽多指标提取方法[J]. 测绘通报, 2023, 0(11): 75-81. |
[4] | 林凯伦, 杨元维, 高贤君, 谭美淋, 张跃. 多级索引框及移动向量联合的接触网提取方法[J]. 测绘通报, 2023, 0(11): 82-87. |
[5] | 孙端正, 高飞, 叶周润, 吴言安, 张树峰, 谢荣晖. 改进PointNet++模型在道路杆状物提取中的应用[J]. 测绘通报, 2023, 0(11): 95-99. |
[6] | 李政乾, 李宏伟, 赵姗. 基于熵权TOPSIS分析法的郑州市三维地质环境承载力评价[J]. 测绘通报, 2023, 0(11): 100-106. |
[7] | 江岭, 张大鹏, 黄丹妮, 黄骁力, 陈西, 李鹏, 陈万里, 汪永丰, 王岽. 平原农区全域土地综合整治“三生”空间格局优化效果评价[J]. 测绘通报, 2023, 0(11): 145-151. |
[8] | 蒋凤钗, 练栩, 徐然, 雷丽珍, 刘雪俊. 面向建设用地专题分析的实体模型及应用[J]. 测绘通报, 2023, 0(11): 152-157. |
[9] | 李德重, 姚娜, 薛永军, 熊文豪, 王龙秀. 内蒙古自治区自然资源调查监测高精度实景三维建设方法与实践[J]. 测绘通报, 2023, 0(11): 158-162. |
[10] | 关琳, 王让会, 刘春伟, 周丽敏. 祁连山自然保护区生态环境大数据管理模式的探讨[J]. 测绘通报, 2023, 0(7): 97-106. |
[11] | 陈颂, 张福浩, 仇阿根, 赵习枝, 王苑, 欧尔格力. 图斑数据的多密度属性连接聚类方法[J]. 测绘通报, 2023, 0(7): 107-112. |
[12] | 解智强, 王昊, 赵雷, 傅星峰, 姜沣珊, 杨寿泉. 水力建模与GIS量化表达的地下排水管线承载力评价[J]. 测绘通报, 2023, 0(7): 113-118,124. |
[13] | 王伟, 黄绘青, 胡娈运. 湖南省典型区域土壤侵蚀监测方法研究与应用[J]. 测绘通报, 2023, 0(7): 149-153. |
[14] | 吴厚清, 刘华东, 潘骁骏, 熊成利, 吴迪. 面向市县全域的实景三维建设技术——以浙江省为例[J]. 测绘通报, 2023, 0(7): 154-159. |
[15] | 叶芬, 胡燕, 杨琪琳, 胡晓丹. 基于知识-规则的省级基础地理实体多源数据融合转换方法[J]. 测绘通报, 2023, 0(7): 160-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||