[1] 许振宇,李盈昌,李明阳,等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报,2020,40(11): 147-155. [2] 于大洋,董贵威,杨健,等. 基于干涉极化SAR数据的森林树高反演[J]. 清华大学学报(自然科学版),2005,45(3): 334-336. [3] ZHU Xiaoxiao,WANG Cheng,NIE Sheng,et al. Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: a case study in Virginia and North Carolina,USA[J]. Ecological Indicators,2020,114: 106287. [4] HUANG Xiang,CHENG Feng,WANG Jinliang,et al. Forest canopy height extraction method based on ICESat-2/ATLAS data[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61: 1-14. [5] LI Wang,NIU Zheng,SHANG Rong,et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1,Sentinel-2 and Landsat-8 data[J]. International Journal of Applied Earth Observation and Geoinformation,2020,92: 102163. [6] 曲苑婷,汪垚,刘观潮,等. 基于GLAS激光雷达反演森林生物量[J]. 测绘通报,2014(11): 73-77. [7] 温雨笑,吕杰,马庆勋,等. 高光谱和LiDAR联合反演森林生物量研究[J]. 测绘通报,2022(7): 38-42. [8] POTAPOV P,LI Xinyuan,HERNANDEZ-SERNA A,et al.Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment,2021,253: 112165. [9] 薛春泉,林俊钦,叶金盛,等. 广东省森林生态状况与建设对策[J]. 广东林业科技,2005,21(2): 55-59. [10] 越霖轩. 广东: 五年林业生态建设成效显著[J]. 中国林业,2004(24):9-10. [11] HUANG Wenli,MIN Wankun,DING Jiaqi,et al. Forest height mapping using inventory and multi-source satellite data over Hunan Province in Southern China[J]. Forest Ecosystems,2022,9: 100006. [12] GUO Qinghua,SU Yanjun,HU Tianyu,et al. LiDAR boosts 3D ecological observations and modelings: a review and perspective[J]. IEEE Geoscience and Remote Sensing Magazine,2021,9(1): 232-257. [13] LI Wang,NIU Zheng,SHANG Rong,et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1,Sentinel-2 and Landsat-8 data[J]. International Journal of Applied Earth Observation and Geoinformation,2020,92: 102163. [14] 李朝旗. 综合土地利用特征与工程特性的农用地整治碳效应研究: 以广东省为例[D]. 南京: 南京大学,2016. [15] 马秀芳. 广东省森林资源动态变化及其服务功能价值评估[D]. 广州: 广州大学,2007. [16] 周传艳. 广东省森林植被恢复下碳的动态和分布[D]. 北京: 中国科学院华南植物研究所,2006. [17] HANCOCK S,ARMSTON J,HOFTON M,et al. The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions[J]. Earth and Space Science,2019,6(2): 294-310. [18] 胡庆芳,胡艳,杨大文,等. 面向大范围降水空间插值的普通克里金模型开发与实例分析[J]. 应用基础与工程科学学报,2014,22(1): 106-117. [19] LIU Xiaoqiang,SU Yanjun,HU Tianyu,et al. Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data[J]. Remote Sensing of Environment,2022,269: 112844. [20] SU Yanjun,GUO Qinghua,XUE Baolin,et al. Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar,optical imagery,and forest inventory data[J]. Remote Sensing of Environment,2016,173: 187-199. |