测绘通报 ›› 2024, Vol. 0 ›› Issue (7): 77-82.doi: 10.13474/j.cnki.11-2246.2024.0714

• 学术研究 • 上一篇    下一篇

基于人工神经网络的UWB坐标误差一步改正模型

王一帆1,2, 李增科1,3, 蒋诗政4, 陈远5, 黄林超5, 吉丽娅6, 邓伟昉6   

  1. 1. 中国矿业大学环境与测绘学院, 江苏 徐州 221116;
    2. 云南电网有限责任公司电力科学研究院, 云南 昆明 650217;
    3. 中国矿业大学江苏省资源环境信息工程重点实验室, 江苏 徐州 221116;
    4. 桂林理工大学测绘地理信息学院, 广西 桂林 541006;
    5. 南方电网数字电网科技(广东)有限公司, 广东 广州 510000;
    6. 煜邦数字科技(广东)有限公司, 广东 广州 510000
  • 收稿日期:2023-11-30 发布日期:2024-08-02
  • 通讯作者: 李增科。E-mail:zengkeli@yeah.net
  • 作者简介:王一帆(1994—),男,博士,工程师,主要从事基于卫星技术的电网运维及灾害防御、室内外高精度定位的研究工作。E-mail:wangyifan@yn.csg.cn
  • 基金资助:
    中国博士后科学基金(2021MD703896);云南省基础研究计划项目(202301AU070101)

Direct correction model for UWB coordinate error based on artificial neural network

WANG Yifan1,2, LI Zengke1,3, JIANG Shizheng4, CHEN Yuan5, HUANG Linchao5, JI Liya6, DENG Weifang6   

  1. 1. Schod of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
    2. Joint Laboratory of Power Remote Sensing Technology, Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China;
    3. Key Laboratory of Resource and Environmental Information Engineering, China University of Mining and Technology, Xuzhou 221116, China;
    4. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China;
    5. Southern Digital Power Grid Technology (Guangdong) Co., Ltd., Guangzhou 510000, China;
    6. Yu Bang Digital Science and Technology (Guangdong) Co., Ltd., Guangzhou 510000, China
  • Received:2023-11-30 Published:2024-08-02

摘要: 针对超宽带(UWB)定位存在的坐标误差难以利用常规手段进行改正的问题,本文提出了基于广义回归神经网络(GRNN)和反向传播神经网络(BPNN)的UWB坐标误差一步改正模型。改正模型以UWB原始定位坐标、与不同基站间距离为输入,以UWB相对高精度参考值误差为输出,分别以GNSS RTK点位坐标为动态试验参考值、全站仪点位坐标为静态试验参考值,对改正模型进行训练。将改正模型分别用于改正非建模样本点的UWB坐标,然后对改正前后的精度及不同改正模型的精度进行了比较分析。结果表明:利用人工神经网络直接建立UWB坐标一步改正模型的方法是可行的,该方法无须再次利用改正后的测距值解算坐标,更加简便、快捷;两种模型总体均能有效改善UWB的动态、静态定位坐标精度;且基于GRNN的改正模型相比基于BPNN的改正模型可以更有效地改善UWB坐标误差,改正后的UWB动态定位平面坐标精度可达厘米级,静态定位平面坐标精度高达毫米级。

关键词: 超宽带定位, 坐标误差改正, 广义回归神经网络, 反向传播神经网络, 一步改正

Abstract: The one-step ultra-wideband (UWB) coordinate error correction models based on the generalized regression neural network (GRNN) and back-propagation neural network (BPNN) were proposed to address the difficulty of correcting the coordinate error existing in UWB positioning based on conventional means. The correction models took the UWB original positioning coordinates,the distance between it and different base stations as inputs,and the UWB relative high-precision reference value error as output. The correction models were trained with GNSS RTK point coordinates as the dynamic experimental reference values and total station point coordinates as the static experimental reference values,respectively. Besides,the correction models were employed to correct the UWB coordinates of the non-modeled sample points. Then a comparative analysis of the accuracies before and after correction and the accuracies of the different correction models was conducted. The results show that the method of using artificial neural networks to construct the one-step UWB coordinate error correction models is feasible and it is easier and faster without the need to solve the coordinates using the corrected distance. The correction models can effectively improve the dynamic and static positioning coordinate accuracy of UWB overall. Among them,the correction performance of the GRNN-based correction model is the most significant. Moreover,the GRNN-based correction model can correct the UWB coordinate error more effectively than the BPNN-based correction model. The accuracy of the corrected UWB dynamic positioning planar coordinate can reach the centimeter level,and the accuracy of the static positioning planar coordinate is as high as the millimeter level.

Key words: ultra-wideband positioning, coordinate error correction, generalized regression neural network, backpropagation neural network, directly correction

中图分类号: