测绘通报 ›› 2024, Vol. 0 ›› Issue (9): 44-49.doi: 10.13474/j.cnki.11-2246.2024.0909

• 学术研究 • 上一篇    下一篇

融合InSAR与GWO-LSTM对高陡山地的形变监测与预测——以金沙江流域某边坡为例

彭翔1, 甘淑1,2, 袁希平2,3, 朱智富1, 李璇1, 龚伟圳1   

  1. 1. 昆明理工大学国土资源工程学院, 云南 昆明 650093;
    2. 云南省高校高原山地空间信息测绘技术应用工程研究中心, 云南 昆明 650093;
    3. 滇西应用技术大学云南省高校山地实景点云数据处理及应用重点实验室, 云南 大理 671006
  • 收稿日期:2024-01-02 发布日期:2024-10-09
  • 通讯作者: 甘淑。E-mail:n1480@qq.com
  • 作者简介:彭翔(1999—),男,硕士生,主要研究方向为InSAR原理及应用研究。E-mail:1300889019@qq.com
  • 基金资助:
    国家自然科学基金(62266026)

Fusion of InSAR and GWO-LSTM for deformation monitoring and prediction of high and steep mountains: a case study of a slope in the Jinsha River basin

PENG Xiang1, GAN Shu1,2, YUAN Xiping2,3, ZHU Zhifu1, LI Xuan1, GONG Weizhen1   

  1. 1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    2. Application Engineerimg Research Center of Plaleau and Mountainous Spatial Information Surveying and Mapping Technology in Yunnan Universities, Kunming 650093, China;
    3. Key Laloratory of Cloud Data Processing and Application of Mountain Scenic Spot in Yunnan Universities, West Yunnan University of Applied Technology, Dali 671006, China
  • Received:2024-01-02 Published:2024-10-09

摘要: 由于乌东德水电站下游处于金沙江流域,水电站泄洪会导致下游区域水位发生变化和断裂带附近的地质活动频繁,从而改变流域周围边坡的稳定性,因此极易发生滑坡灾害并造成堵江。为了解高陡山地的边坡情况,本文首先利用2021年1月—2023年10月的81景Sentinel-A影像,采用SBAS-InSAR技术,得到研究区地表形变特征,并结合形变速率图和遥感影像,识别出可能存在的滑坡风险区域;然后选取A1、A2、A4作为典型区域,通过累计时序形变进行分析,并构建LSTM神经网络沉降预测模型,采用GWO算法进行超参数寻优;最后将选点得到的沉降数据分为训练集和测试集,与传统预测模型SVR精度进行对比。结果表明,GWO-LSTM模型对复杂山区的滑坡体形变预测具有较高精度,9个测试点中最大平均绝对误差为1.080 8 mm,最大均方根误差为1.194 2 mm。本文为滑坡灾害预警及治理提供了理论依据。

关键词: SABS-InSAR, 滑坡识别, 灰狼优化, LSTM记忆网络

Abstract: Due to the fact that the downstream of the Wudongde hydropower station is located in the Jinsha River basin, the flood discharge of the hydropower station will cause changes in the water level in the downstream area and frequent geological activities near the fault zone, thereby changing the stability of the slopes around the basin. It is highly prone to landslide disasters and causing river blockage. In order to gain the understanding of the slope conditions in high and steep mountainous areas, this experiment utilizes 81 Sentinel-A images from January 2021 to October 2023, and obtains surface deformation characteristics using SBAS-InSAR technology. By combining deformation rate maps and remote sensing images, potential landslide risk areas are identified. A1, A2, and A4 are selected as typical areas and analyzed through cumulative temporal deformation. A LSTM neural network settlement prediction model is constructed, and then the GWO algorithm for hyperparameter optimization is used. The settlement data obtained from the final point selection is divided into a training set and a testing set, and compared with the accuracy of the traditional prediction model SVR. The results show that the GWO-LSTM model has high accuracy in predicting landslide deformation in complex mountainous areas. Among the 9 test points, the maximum mean absolute error is 1.080 8 mm and the maximum root mean square error is 1.194 2 mm. This paper provides a theoretical basis for landslide disaster warning and management.

Key words: SABS-InSAR, landslide identification, GWO, LSTM memory network

中图分类号: