测绘通报 ›› 2024, Vol. 0 ›› Issue (12): 55-60,127.doi: 10.13474/j.cnki.11-2246.2024.1209

• 学术研究 • 上一篇    下一篇

结合DenseNet和ConvLSTM的区域性PM2.5浓度预测

郭凯琳1, 张瑞菊1, 王坚1, 李海波2, 李栋1, 陈才1, 钟华1   

  1. 1. 北京建筑大学, 北京 102616;
    2. 徐州长城基础工程有限公司, 江苏 徐州 221116
  • 收稿日期:2024-03-29 发布日期:2024-12-27
  • 通讯作者: 王坚,E-mail:wangjian@bucea.edu.cn E-mail:wangjian@bucea.edu.cn
  • 作者简介:郭凯琳(2000-),女,硕士,主要研究方向为深度学习。E-mail:GuoKailin117@163.com
  • 基金资助:
    国家电网公司总部科技项目(5700-202356317A-1-1-ZN)

Regional PM2.5 concentration prediction combining DenseNet and ConvLSTM

GUO Kailin1, ZHANG Ruiju1, WANG Jian1, LI Haibo2, LI Dong1, CHEN Cai1, ZHONG Hua1   

  1. 1. Beijing University of Civil Engineering and Architecture, Beijing 102616, China;
    2. Great Wall Foundation Engineering Corporation, Xuzhou 221116, China
  • Received:2024-03-29 Published:2024-12-27

摘要: 准确、可靠地预测PM2.5浓度,对于大众有效规避空气污染和政府策略制定非常重要。然而,由于大气流动的动态性,PM2.5浓度的预测具有很大的不确定性和不稳定性,使得单一模式难以有效地提取时空相关性。本文提出了一个强大的预测系统,可实现准确的单步、多步及趋势预测PM2.5浓度。首先,采用相关分析方法筛选出有助于预测目标城市污染物浓度的气象和污染物空间信息;然后,利用DenseNet的特征提取能力,从多个城市的污染与气象数据集中提取空间相关特征;并利用ConvLSTM层结合污染物数据的时、空特征,对时空特征进行提取以准确预测污染物;最后,通过4个准确性指标和3个预测试验,全面评估了本文提出的预测系统的性能。此外,试验研究表明,该预测系统在大气污染的预警、区域防治和控制方面具有良好的应用前景,并且其精度和稳定性优于各种基线模型。

关键词: 深度学习, 空气污染, DenseNet, 污染物浓度预测

Abstract: Accurate and reliable prediction of PM2.5 concentrations is important for the public to effectively avoid air pollution and for governmental strategy development. However, due to the dynamic nature of atmospheric flows, the prediction of PM2.5 concentration is characterized by great uncertainty and instability, making it difficult for a single model to efficiently extract spatio-temporal correlations. In this paper, a robust prediction system is proposed to realize accurate single-step, multi-step and trend prediction of PM2.5 concentration. First, the article adopts a correlation analysis method to screen the meteorological and pollutant spatial information that can help predict the pollutant concentration in the target city. Then, the feature extraction capability of DenseNet is utilized to extract spatially relevant features from pollution and meteorological datasets from multiple cities; the ConvLSTM layer combines the temporal and spatial features of the pollutant data, and extracts the spatial and temporal features in order to achieve accurate pollutant prediction. Finally, the performance of the proposed prediction system is comprehensively evaluated by four accuracy indicators and three prediction experiments. In addition, the pilot study shows that the prediction system has good application prospects in early warning, regional prevention and control of air pollution, and its accuracy and stability are better than those of various baseline models.

Key words: deep learning, air pollution, DenseNet, pollutant concentration prediction

中图分类号: