测绘通报 ›› 2025, Vol. 0 ›› Issue (1): 143-149.doi: 10.13474/j.cnki.11-2246.2025.0124

• 技术交流 • 上一篇    

结合多源气象数据的TSCSO-SVR季冻区铁路路基形变预测

李国成, 陈光武, 司涌波   

  1. 兰州交通大学自动化与电气工程学院, 甘肃 兰州 730070
  • 收稿日期:2024-04-22 发布日期:2025-02-09
  • 通讯作者: 陈光武。E-mail:2048389648@qq.com
  • 作者简介:李国成(1997—),男,硕士生,研究方向为铁路安全运输。E-mail:12221531@stu.lzjtu.edu.cn
  • 基金资助:
    甘肃省科技重大专项(21ZD4WA018);兰州市科技计划(2023-RC-7)

TSCSO-SVR seasonal freezing area combined with multi-source meteorological data on deformation prediction of railway subgrade

LI Guocheng, CHEN Guangwu, SI Yongbo   

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2024-04-22 Published:2025-02-09

摘要: 针对季冻区铁路路基形变易受环境影响、传统单变量形变预测模型精度不足的问题,本文提出了一种结合多源气象数据的TSCSO-SVR季冻区铁路路基形变预测模型。首先,采用PS-InSAR技术监测路基形变情况,分析气象因素与路基形变之间的相关关系;然后,结合非线性递减、动态扰动、螺旋搜索3种优化策略得到改进沙地猫群算法(TSCSO),构建TSCSO-SVR路基沉降预测模型;最后,结合新疆石河子某段铁路实测数据进行验证。结果表明,多变量模型预测效果普遍优于单变量模型;TSCSO-SVR预测模型相比于其他模型,预测精度最高,具有很好的应用价值。

关键词: 路基形变预测, 沙地猫群算法, SVR, 多源气象数据, PS-InSAR

Abstract: Aiming at the problems that the deformation of railway subgrade in seasonal freezing area is easily affected by environment and the accuracy of traditional single variable deformation prediction model is insufficient, a TSCSO-SVR model combining multi-source meteorological data is proposed in this paper. Firstly, PS-InSAR technology is used to monitor the deformation of roadbed, and the correlation between meteorological factors and roadbed deformation is analyzed. Then, the improved sand cat swarm algorithm (TSCSO) is obtained by combining nonlinear decline, dynamic disturbance and spiral search, and the TSCSO-SVR subgrade settlement prediction model is constructed. Finally, combined with the measured data of a section of railway in Shihezi, Xinjiang. The results show that the prediction effect of multivariate model is generally better than that of univariate model. Compared with other models, TSCSO-SVR prediction model has the highest prediction accuracy and has good application value.

Key words: subgrade deformation prediction, sand cat swarm algorithm, SVR, multi-source meteorological data, PS-InSAR

中图分类号: