测绘通报 ›› 2025, Vol. 0 ›› Issue (1): 150-154,169.doi: 10.13474/j.cnki.11-2246.2025.0125

• 技术交流 • 上一篇    

地铁明挖施工监测图像下的反压土几何参数智能测量方法

赵树林1,2, 李元凯1,2, 李冬3, 翟鸿漾4, 张涛4, 王金4   

  1. 1. 北京市轨道交通建设管理有限公司, 北京 100068;
    2. 城市轨道交通全自动运行系统与安全监控北京市重点实验室, 北京 100068;
    3. 济南市勘察测绘研究院, 山东 济南 250013;
    4. 北京工业大学城市交通学院, 北京 100124
  • 收稿日期:2024-08-26 发布日期:2025-02-09
  • 作者简介:赵树林(1975—),男,高级工程师,主要从事轨道交通建设管理工作。E-mail:yuankailee@163.com
  • 基金资助:
    北京市轨道交通建设管理有限公司“双创”基金(SCJJ2023002);北京市基础设施投资有限公司科研项目(2022-11-06-02);北京市自然科学基金-丰台轨道交通前沿研究联合基金(L221026);北京市自然科学基金(8232005)

Intelligent surveying of geometric parameters of earth berm based on subway open-cut construction images

ZHAO Shulin1,2, LI Yuankai1,2, LI Dong3, ZHAI Hongyang4, ZHANG Tao4, WANG Jin4   

  1. 1. Beijing MTR Construction Administration Co., Ltd., Beijing 100068,China;
    2. Beijing Key Laboratory of Fully Automatic Operation and Safety Monitoring For Urban Rail Transit, Beijing 100068,China;
    3. Jinan Geotechnical Investigation and Surveying Institute,Jinan 250013,China;
    4. College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124,China
  • Received:2024-08-26 Published:2025-02-09

摘要: 为了提高地铁明挖施工视频监测的自动化程度,并智能测量施工过程中堆积反压土几何尺寸,本文提出了一种地铁明挖施工监测图像下反压土几何参数智能测量方法,该方法搭建了面向地铁明挖施工场景精准分割的AFU网络,跳跃连接融合注意力模块和三重跨尺度注意力模块,增强了对施工监测图像细微结构和局部特征的感知能力;基于钢支撑空间分层原理,构建像素长度计算模型,准确估计出反压土的宽度和坡度角。通过3个地铁明挖施工现场视频的测试,AFU网络在消融试验和其他深度学习网络对比中,均取得了最优性能。反压土几何尺寸测量结果与实际较为吻合。本文成果对施工过程中的风险管理具有一定的理论和应用价值。

关键词: 地铁施工, 智能测量, 施工场景图像分割, 反压土, 安全监控

Abstract: To enhance the automation of video data from monitoring taskson subway open-cut construction, and to intelligently survey the geometry of earth berm during the tasks, this paper proposes a method for the intelligent measurement of geometric parameters of earth bermfrom monitoring imageson subway open-cut construction. An AFU network for precise segmentation of subway open-cut construction scenes is established, incorporating skip connections with attention modules and triple cross-scale attention modules to enhance the perception of subtle structures and local features. Based on the principle of spatial stratification of steel supports, a pixel length calculation model is constructed to accurately estimate the width and slope angle of earth berm. Tests on three subway open-cut construction sites show that the AFU network achieves optimal performance in ablation experiments and comparisons with other deep learning networks. The geometric size measurements of the earth berm are closely matched with actual values. The results of this study have theoretical and practical value for risk management during construction processes.

Key words: subway construction, intelligent measurement, construction scenes image segmentation, earth berm, safety monitoring

中图分类号: