测绘通报 ›› 2025, Vol. 0 ›› Issue (3): 117-121.doi: 10.13474/j.cnki.11-2246.2025.0320

• 基础测绘赋能城市建设 • 上一篇    

SHAP解释下随机森林预测的越江盾构隧道病害发展分析

徐鹏宇1,2,3, 王勇1,2,3, 王红雪1,2,3, 高翔1   

  1. 1. 北京城建勘测设计研究院有限责任公司, 北京 100101;
    2. 轨道交通岩土工程深基坑北京市重点实验室, 北京 100101;
    3. 城市智能感知与精密测量工程技术中心, 湖北 武汉 430079
  • 收稿日期:2024-04-08 发布日期:2025-04-03
  • 作者简介:徐鹏宇(1991—),女,硕士,高级工程师,主要从事城市轨道交通摄影测量、结构健康监测及数据挖掘方面的研究工作。E-mail:837574652@qq.com
  • 基金资助:
    国家自然科学基金面上项目(52378385)

Disease development analysis of cross-river shield tunnel based on SHAP explanation of random forest

XU Pengyu1,2,3, WANG Yong1,2,3, WANG Hongxue1,2,3, GAO Xiang1   

  1. 1. Beijing Urban Construction Exploration & Surveying Design Research Institute Co., Ltd., Beijing 100101, China;
    2. Beijing Key Laboratory of Deep Foundation Pit Geotechnical Engineering of Rail Transit, Beijing 100101, China;
    3. Urban Intelligent Perception & Precision Measurement Engineering Technology Center, Wuhan 430079, China
  • Received:2024-04-08 Published:2025-04-03

摘要: 我国轨道交通建造技术愈发成熟,但也无法改变富水环境下隧道变形的现状。工程领域对隧道病害成因、影响因素、控制与治理等方面均有较为深入的研究,但对于隧道尤其是越江盾构隧道的病害分布与发展预测领域的研究却很少。为弥补越江盾构隧道病害发展预测领域的空白,本文基于三维激光测量技术对某越江段盾构隧道全断面扫描的历史监测数据,利用SHAP解释的随机森林模型预测未来一期监测数据;预测结果精度评估合格后,分析预测数据判断隧道变形发生位置和程度,为地铁运营维护提供依据。

关键词: 病害发展分析, 越江盾构隧道, 病害预测, SHAP, 随机森林

Abstract: Rail transit construction technology in China is becoming more and more mature, however, the current situation of tunnel deformation in a water-rich environment can not be changed. In the field of engineering, scholars have conducted in-depth research on the causes, influencing factors, control and treatment of tunnel diseases. However, there are few studies on the disease distribution and development prediction of tunnels, especially cross-river shield tunnels. In order to make up for the blank in the field of disease development prediction of cross-river shield tunnels, the study forecasts the next phase of monitoring data based on RF added SHAP values and historical monitoring data which are from the full-section scanning of the shield tunnel in the cross-river section by 3D laser measurement technology. After evaluating the accuracy of the prediction results, we can analyze the prediction data to determine the location and degree of the tunnel deformation, which will provide the basis for subway operation and maintenance.

Key words: disease development analysis, cross-river shield tunnel, disease forecast, SHAP, random forest

中图分类号: