测绘通报 ›› 2025, Vol. 0 ›› Issue (3): 127-132.doi: 10.13474/j.cnki.11-2246.2025.0322

• 技术交流 • 上一篇    

浙江省多特征内陆水体精细化提取

王兴坤1,2,3, 李佳鑫1,2, 冯存均1,2,3, 詹远增1,2,3, 朱校娟1,2,3, 周伟1,2, 邓小渊1,2,3   

  1. 1. 浙江省测绘科学技术研究院, 浙江 杭州 310001;
    2. 自然资源浙江省卫星应用技术中心, 浙江 杭州 310001;
    3. 自然资源部地理国情监测重点实验室, 浙江 杭州 310001
  • 收稿日期:2024-07-11 发布日期:2025-04-03
  • 通讯作者: 李佳鑫。E-mail:lijiaxin20@mails.ucas.ac.cn
  • 作者简介:王兴坤(1992—),男,硕士,工程师,主要研究方向为卫星遥感应用。E-mail:3552115149@qq.com
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划(2023C01027)

Refined extraction of multi-feature inland water bodies in Zhejiang province

WANG Xingkun1,2,3, LI Jiaxin1,2, FENG Cunjun1,2,3, ZHAN Yuanzeng1,2,3, ZHU Xiaojuan1,2,3, ZHOU Wei1,2, DENG Xiaoyuan1,2,3   

  1. 1. Zhejiang Academy of Surveying and Mapping, Hangzhou 310001, China;
    2. Zhejiang Application Center of Nature Resources Satellite Technology, Hangzhou 310001, China;
    3. Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources, Hangzhou 310001, China
  • Received:2024-07-11 Published:2025-04-03

摘要: 针对多特征内陆水体卫星遥感自动提取精度不足的问题,本文以浙江省为研究区,讨论Vision Transformer (ViT)视觉大模型对不同特征内陆水体的提取精度。通过历史地理国情监测成果获取大规模样本,得到预训练模型;结合浙江省内陆水体多层次感知特点,利用UPerNet网络,从场景、对象、部分、材质和纹理等不同方面对ViT模型输出层进行全方位的优化,进一步增加了ViT模型对多尺度多特征水体的感知能力。本文算法精度、召回率均在90%以上,相比传统指数阈值法精度提升15%,比预训练模型精度提升10%,可以满足浙江省水面面积调查监测的精度要求。结果表明,特征优化后的视觉大模型可以很好地适用于多特征内陆水体提取,服务于全国水资源调查工作。

关键词: 视觉大模型, 内陆水体, 卫星遥感, 多层次感知

Abstract: Aiming at the problem of insufficient accuracy of automatic extraction of multi-feature inland water bodies by satellite remote sensing,this paper takes Zhejiang province as the research scope to explore the extraction accuracy of the Vision Transformer (ViT)largevision model for inland water bodies with different features. Through the results of historical geographical national conditions monitoring,large scale samples are obtained to get a pre-trained model.Combined with the multi-level perception characteristics of inland water bodies in Zhejiang province,the UPerNet network is used to optimize the output layer of the ViT model from different aspects such as scenes,objects,parts,materials and textures,further increasing the perception ability of the ViT model for multi-scale and multi-feature water bodies. The accuracy and recall rate of the algorithm in this paper can reach 90%,which is 15% higher than the traditional exponential threshold method and 10% higher than the pre-trained model.Through post-processing,it can meet the accuracy requirements of the water surface area survey and monitoring in Zhejiang province.The results show that the feature-optimized visual large model can be well applied to the extraction of multi-feature inland water bodies and serve the national water resources survey.

Key words: vision large model, inland water bodies, satellite remote sensing, multi-level perception

中图分类号: