测绘通报 ›› 2025, Vol. 0 ›› Issue (5): 145-151.doi: 10.13474/j.cnki.11-2246.2025.0524

• 技术交流 • 上一篇    

非接触式单目视觉高精度自动沉降监测

宋维凯1, 柯福阳1, 魏民2, 黄钰洲2, 朱尚峻2   

  1. 1. 南京信息工程大学软件学院, 江苏 南京 210044;
    2. 南京信息工程大学遥感与测绘工程学院, 江苏 南京 210044
  • 收稿日期:2024-09-26 发布日期:2025-06-05
  • 通讯作者: 柯福阳。E-mail:kefuyang@nuist.edu.cn
  • 作者简介:宋维凯(1998—),男,硕士,研究方向为计算机视觉。E-mail:11940756248q9.com
  • 基金资助:
    江苏省地质工程环境智能监控工程研究中心开放基金研究计划(2023-ZNIKJ1-08);2022年度第六期“333人才”培养支持资助项目(BRA2022042);江苏省自然资源科技项目(关键技术研发)(JSZRKJ202404)

Non-contact monocular vision high-precision automatic settlement monitoring

SONG Weikai1, KE Fuyang1, WEI Min2, HUANG Yuzhou2, ZHU Shangjun2   

  1. 1. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China;
    2. School of Remote Sensing and Surveying Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2024-09-26 Published:2025-06-05

摘要: 单目视觉沉降监测是一种新型的非接触式监测方法,然而受背景复杂、基准标靶安装要求高等问题的影响,有时无法满足单目视觉沉降监测的需求。因此,本文提出了一种非接触式单目视觉高精度自动沉降监测方法。首先,在待监测区域安装测量标靶,通过目标检测算法YOLOv10s完成标靶的识别;其次,采用基于边缘的最小二乘椭圆拟合法求解标靶的中心点像素坐标;然后,基于相机成像原理进行推导,通过一种改进的世界坐标计算方法求解标靶中心点像素坐标对应的世界坐标;最后,以监测区域的第1帧图像为基准求解真实的沉降值。通过室外模拟沉降试验,将单目视觉计算值与电子水准仪测量值对比,并以两者的绝对误差作为评价指标,通过改变标靶与相机之间的距离验证其与该方法监测精度的关系。当相机与标靶之间的距离为5 m时,最大绝对误差为2.784 mm,最小绝对误差为0.246 mm;当距离为10 m时,最大绝对误差为4.071 mm,最小绝对误差为0.42 mm。标靶与相机的距离越远精度越低,但在10 m距离、沉降值250 mm以内,该方法的平均绝对误差为1.543 mm。

关键词: 单目视觉, 沉降监测, YOLOv10s, 像素坐标, 世界坐标, 电子水准仪

Abstract: Monocular visual settlement monitoring represents a novel non-contact monitoring approach. Nevertheless, challenges arise from intricate backgrounds and stringent benchmark target installation prerequisites, occasionally impeding the efficacy of this method for settlement monitoring. This paper introduces a non-contact monocular vision method for high-precision automatic settlement monitoring. Initially, the measurement target is positioned within the designated monitoring area, and target identification is achieved utilizing the YOLOv10s target detection algorithm. Subsequently, the edge-based least squares ellipse fitting technique is employed to determine the pixel coordinates of the target's center point. Following this, leveraging the principles of camera imaging, a derivation process is conducted to establish the world coordinates corresponding to the pixel coordinates of the target's center point using an enhanced world coordinate computation approach. Ultimately, the actual displacement value is computed with the initial frame image of the monitored area serving as the reference. Through outdoor simulation settlement experiments, we compare the monocular visual calculated value with the electronic level measurement value, using their absolute error as the evaluation metric. By varying the distance between the camera and the target, we assess the monitoring accuracy of the proposed method. At a distance of 5 m, the maximum absolute error is 2.784 mm, and the minimum is 0.246 mm. When the distance is increased to 10 m, the maximum absolute error rose to 4.071 mm, with a minimum of 0.42 mm. The experimental results demonstrate that as the distance between the target and the camera increases, the accuracy decreases. However, within a distance range of up to 10 m and a settlement value of 250 mm, the average absolute error of the method stands at 1.543 mm.

Key words: monocular vision, settlement monitoring, YOLOv10s, pixel coordinates, world coordinates, electronic level

中图分类号: