测绘通报 ›› 2025, Vol. 0 ›› Issue (7): 90-96.doi: 10.13474/j.cnki.11-2246.2025.0715

• 学术研究 • 上一篇    下一篇

自适应门控机制嵌入图神经网络的下一个POI推荐

迟晋浙1, 刘纪平2, 徐胜华2, 王勇2, 王琢璐1   

  1. 1. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123032;
    2. 中国测绘科学研究院, 北京 100036
  • 收稿日期:2024-11-04 发布日期:2025-08-02
  • 通讯作者: 刘纪平。E-mail:liujp@casm.ac.cn
  • 作者简介:迟晋浙(1999—),女,硕士生,研究方向为下一个兴趣点推荐。E-mail:jinzhchi@163.com
  • 基金资助:
    国家自然科学基金(42371478;42071384)

Next POI recommendation with an adaptive gating mechanism embedded in graph neural networks

CHI Jinzhe1, LIU Jiping2, XU Shenghua2, WANG Yong2, WANG Zhuolu1   

  1. 1. School of Surveying, Mapping and Geographical Sciences, Liaoning Technical University, Fuxin 123032, China;
    2. Chinese Academy of Surveying and Mapping, Beijing 100036, China
  • Received:2024-11-04 Published:2025-08-02

摘要: 下一个POI推荐在基于位置的社交网络中备受关注,旨在通过用户历史签到及时序信息精准推荐。但传统方法未考虑时序和图节点,学习效率低。本文将自适应门控机制分别嵌入地理图模块和顺序图模块,提出了自适应门控机制嵌入图神经网络的下一个POI推荐方法。该网络主要由地理图模块、顺序图模块及语义联合模块3部分构成。其中,自适应地理图模块将自适应门控机制与图卷积神经网络结合,通过门控信号调整节点融合更新比重;自适应顺序图模块通过随机游走网络学习用户的访问偏好,并使用自适应门控机制根据目标任务属性提升相关偏好的比重;设计语义联合模块用于最大化地理图及顺序图模块的一致性分布,并使用软标签交叉熵损失函数优化联合框架的损失。为验证模型有效性,对国外公开数据集(Foursquare_NYC、Foursquare_TKY)及国内数据集(Microblog)进行试验。结果表明,本文提出的模型推荐精度均在85%以上,且相较于最先进的基线模型,精度提升2.97%~86.90%。

关键词: 自适应门控机制, 下一个POI推荐, 图神经网络

Abstract: The recommendation of the next POI has attracted much attention in location-based social networks,aiming to accurately recommend POIs based on users' historical check-ins and temporal information.However,traditional methods fail to consider temporal sequences and have low learning efficiency for graph nodes.To address this,in this paper,we propose a method for next POI recommendation by incorporating adaptive gating mechanisms into geographic and sequential graph modules.The proposed network consists of three main parts: the adaptive geographic graph module,which combines the adaptive gating mechanism with graph convolutional neural networks to adjust node fusion update weights by using gating signals; the adaptive sequential graph module,which learns user access preferences through a random walk network and enhances the weights of relevant preferences on the basis of target task attributes using adaptive gating mechanisms; and the semantic joint module,which maximizes the consistency distribution between the geographic and sequential graph modules and optimizes the loss of the joint framework via soft-label cross-entropy loss functions.To validate the effectiveness of the model,experiments are conducted on foreign datasets (Foursquare_NYC and Foursquare_TKY)and a domestic dataset(Microblog).The experimental results demonstrate that the proposed model achieves recommendation accuracies of over 85% across all datasets,with performance improvements ranging from 2.97% to 86.90% over those of state-of-the-art baseline models.

Key words: adaptive gating mechanism, next POI recommendation, graph neural networks

中图分类号: