测绘通报 ›› 2025, Vol. 0 ›› Issue (9): 135-139.doi: 10.13474/j.cnki.11-2246.2025.0922

• 学术研究 • 上一篇    下一篇

复杂光照下YOLOv7深度学习算法驱动的标志点区域提取

张辰1, 储云志1, 吴兆福2, 徐立晨1, 黄建伟2, 李水平2,3   

  1. 1. 安徽省地质测绘技术院, 安徽 合肥 230022;
    2. 合肥工业大学, 安徽 合肥 230009;
    3. 武汉引力与固体潮国家野外科学观测研究站, 湖北 武汉 430075
  • 收稿日期:2025-03-20 发布日期:2025-09-29
  • 通讯作者: 徐立晨。E-mail:learning_xlc@163.com
  • 作者简介:张辰(1998—),男,硕士,工程师,主要从事近景摄影测量研究工作。E-mail:1603137351@qq.com
  • 基金资助:
    武汉引力与固体潮国家野外观测研究站开放基金(WHYWZ202107);中央高校基本科研业务费专项资金(JZ2020HGQA0139)

Marker region extraction driven by YOLOv7 deep learning algorithm under complex illumination

ZHANG Chen1, CHU Yunzhi1, WU Zhaofu2, XU Lichen1, HUANG Jianwei2, LI Shuiping2,3   

  1. 1. Geological Surveying and Mapping Technology Institute of Anhui Province, Hefei 230022, China;
    2. Hefei University of Technology, Hefei 230009, China;
    3. National Observation and Research Station of Wuhan Gravitation and Solid Earth Tides, Wuhan 430075, China
  • Received:2025-03-20 Published:2025-09-29

摘要: 在计算机视觉与近景摄影测量领域,标志点应用广泛,其定位与准确提取直接影响观测精度。然而在长时序监测中,复杂光照条件会导致标志点识别提取效果差进而影响监测精度,为此本文提出了基于深度学习算法的标志点提取方法。首先利用不同光照环境的标志点影像建立标志点数据集;然后在不同光照条件下对标志点进行识别及精度分析;最后对YOLOv7算法提取的标志点区域进行位移试验以确定观测精度。结果表明,YOLOv7深度学习算法可以快速、准确地识别标志点感兴趣区域,mAP为95.45%,F1值为94.36%,帧率仅为4.40;在不同光照条件下,均能准确识别标志点区域且观测精度高。研究结果可为长时序动态监测中复杂环境下自动高精度提取标志点区域提供有效解决思路。

关键词: YOLOv7算法, 长时序监测, 标志点, 复杂光照, 感兴趣区域提取

Abstract: In the fields of computer vision and close-range photogrammetry,marker points are widely used,and their positioning and accurate extraction directly affect the observation accuracy.However,in long-term monitoring,complex lighting conditions can lead to poor recognition and extraction effects of marker points,thereby affecting the monitoring accuracy.For this purpose,this paper proposes a marker point extraction method based on deep learning algorithms.Firstly,a marker point dataset is established by using marker point images in different lighting environments.Then,the marker points are identified under different lighting conditions and accuracy analysis is conducted.Finally,displacement experiments were conducted on the marker point areas extracted by the YOLOv7 algorithm to determine the observation accuracy.The results show that the YOLOv7 deep learning algorithm can quickly and accurately identify the region of interest of the marker points,with a mAP of 95.45%,an F1 value of 94.36%,and a frame rate of only 4.40.Under different lighting conditions,the landmark area can be accurately identified and the observation accuracy is high.The research results can provide effective solutions for the automatic and high-precision extraction of marker point areas in complex environments in long-term dynamic monitoring.

Key words: YOLOv7 algorithm, long time series monitoring, marker point, complex illumination, region of interest extraction

中图分类号: