[1] 杨飞, 汪莹莹, 李志才, 等.基于GNSS观测的2023北京特大暴雨分析[J].测绘学报, 2025, 54(1):14-25. [2] WULFMEYER V, HARDESTY R M, TURNER D D, et al.A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles[J].Reviews of Geophysics, 2015, 53(3):819-895. [3] REALINI E, SATO K, TSUDA T, et al.An observation campaign of precipitable water vapor with multiple GPS receivers in western Java, Indonesia[J].Progress in Earth and Planetary Science, 2014, 1(1):17. [4] DOMINGO A L S, MACALALAD E P.Temporal analysis of GNSS-based precipitable water vapor during rainy days over the Philippines from 2015 to 2017[J].Atmosphere, 2022, 13(3):430. [5] LI Haobo, WANG Xiaoming, WU Suqin, et al.Development of an improved model for prediction of short-term heavy precipitation based on GNSS-derived PWV[J].Remote Sensing, 2020, 12(24):4101. [6] 张克非, 李浩博, 王晓明, 等.地基GNSS大气水汽探测遥感研究进展和展望[J].测绘学报, 2022, 51(7):1172-1191. [7] SERRANO-VINCENTI S, CONDOM T, CAMPOZANO L, et al.Harmonic analysis of the relationship between GNSS precipitable water vapor and heavy rainfall over the northwest equatorial coast, Andes, and Amazon regions[J].Atmosphere, 2022, 13(11):1809. [8] SAASTAMOINEN J.Contributions to the theory of atmospheric refraction[J].Bulletin Géodésique (1946—1975), 1972, 105(1):279-298. [9] SHANGGUAN Ming, DANG Meng, YUE Yingchun, et al.A combined model to predict GNSS precipitable water vapor based on deep learning[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16:4713-4723. [10] ZHAO Qingzhi, ZHANG Xiaoya, WU Kan, et al.Comprehensive precipitable water vapor retrieval and application platform based on various water vapor detection techniques[J].Remote Sensing, 2022, 14(10):2507. [11] NZELIBE I U, TATA H, IDOWU T O.Assessment of GNSS zenith tropospheric delay responses to atmospheric variables derived from ERA5 data over Nigeria[J].Satellite Navigation, 2023, 4(1):15. [12] ADAVI Z, GHASSEMI B, WEBER R, et al.Machine learning-based estimation of hourly GNSS precipitable water vapour[J].Remote Sensing, 2023, 15(18):4551. [13] BEVIS M, BUSINGER S, HERRING T A, et al.GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J].Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [14] 邓莹莹, 范士杰, 陈钰, 等.顾及日变化的山东省大气加权平均温度模型构建[J].地理空间信息, 2023, 21(12):47-50. [15] ABDELFATAH M A.Artificial neural network for improving the estimation of weighted mean temperature in Egypt[J].Journal of Applied Geodesy, 2022, 16(1):59-64. [16] 姚宜斌, 孙章宇, 许超钤.Bevis公式在不同高度面的适用性以及基于近地大气温度的全球加权平均温度模型[J].测绘学报, 2019, 48(3):276-285. [17] 王新志, 陈发源.FY-4A GIIRS数据与ERA5再分析资料融合的中国区域大气加权平均温度模型[J].测绘学报, 2023, 52(6):904-916. [18] 杨飞, 郭际明, 陈明, 等.GNSS大气加权平均温度经验模型精化方法的建立和分析[J].测绘学报, 2022, 51(11):2339-2345. [19] 武可强, 王建强, 万安国.江西省加权平均温度季节性多因子模型研究[J].测绘地理信息, 2021, 46(4):44-49. [20] 邹玉学, 岳迎春, 叶涛, 等.吉林地区非线性大气加权平均温度模型[J].导航定位学报, 2020, 8(4):74-79. [21] 池钦, 赵兴旺, 陈健.几种典型机器学习算法在短临降雨预报分析研究[J].全球定位系统, 2022, 47(4):122-128. [22] ASKNE J, NORDIUS H.Estimation of tropospheric delay for microwaves from surface weather data[J].Radio Science, 1987, 22(3):379-386. [23] 万某峰.地基GNSS反演对流层水汽空间分布信息关键技术研究[D].徐州:中国矿业大学, 2023. [24] DAVIS J L, HERRING T A, SHAPIRO I I, et al.Geodesy by radio interferometry:effects of atmospheric modeling errors on estimates of baseline length[J].Radio Science, 1985, 20(6):1593-1607. [25] 王群, 上官明, 张志伟, 等.江苏区域格网加权平均温度线性模型研究[J].测绘科学, 2021, 46(3):110-116. [26] 李黎, 樊奕茜, 王亮, 等.湖南地区加权平均温度的影响因素分析及建模[J].大地测量与地球动力学, 2018, 38(1):48-52. [27] 王明华, 曹云昌, 梁宏, 等.中国区域性大气加权平均温度线性模型精度评估[J].南京信息工程大学学报(自然科学版), 2021, 13(2):161-169. [28] 聂檄晨, 胡伍生, 朱明晨, 等.中国区域加权平均温度的时空分析及模型研究[J].测绘科学, 2021, 46(2):159-164. [29] 李浩杰, 刘立龙, 黄良珂, 等.顾及多因子影响的中国区域Tm模型精化研究[J].大地测量与地球动力学, 2022, 42(4):393-397. |