测绘通报 ›› 2017, Vol. 0 ›› Issue (10): 48-51.doi: 10.13474/j.cnki.11-2246.2017.0315

• 学术研究 • 上一篇    下一篇

一种采用图像特征匹配技术的RGB-D SLAM算法

许晓东, 陈国良, 李晓园, 周文振, 杜珊珊   

  1. 中国矿业大学环境与测绘学院, 江苏 徐州 221116
  • 收稿日期:2017-02-27 修回日期:2017-05-19 出版日期:2017-10-25 发布日期:2017-11-07
  • 通讯作者: 陈国良。E-mail:chglcumt@163.com E-mail:chglcumt@163.com
  • 作者简介:许晓东(1993-),男,硕士生,主要从事机器人室内定位研究。E-mail:aqautune@sina.com
  • 基金资助:
    国家重点研发计划(2016YFB0502105);国家自然科学基金(41371423);江苏省自然科学基金(BK20161181)

Research on RGB-D SLAM Based on Image Feature

XU Xiaodong, CHEN Guoliang, LI Xiaoyuan, ZHOU Wenzhen, DU Shanshan   

  1. School of Enviroment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
  • Received:2017-02-27 Revised:2017-05-19 Online:2017-10-25 Published:2017-11-07

摘要: 针对复杂环境下运动机器人自主运行的任务要求,提出了一种采用图像特征匹配技术的视觉SlAM算法。相比于传统滤波器方法在机器人长时间运动过程中产生的误差积累,采用了基于图优化的SlAM方法,本文算法分为两个部分:前端和后端。前端负责处理图像数据提取机器人位姿几何关系,首先提取彩色RGB图像的特征点,创建特征点的高维特征描述子,建立特征点的位置对应关系;后端负责表达各时刻机器人的位姿并最大化地消除轨迹漂移问题,根据前端处理所产生的信息,构建一个代表机器人几何位置关系及其不确定性的关系图,通过对图的优化将测量轨迹最大化地逼近真实轨迹,最后生成稀疏点云地图和高精度的机器人运行轨迹。试验表明本文所提出的方法实用性强,具有较高的鲁棒性。

关键词: 同时定位与地图构建, RGB-D, 图优化, 特征提取匹配, 闭环检测

Abstract: Aiming at the requirement of autonomous operation of the mobile robot in complex environment,this paper proposes a RGB-D SLAM based on image feature.Compared with the traditional filter method,the error accumulation during the long time motion of the robot is accumulated,adopt SLAM method based on graph optimization.Proposed algorithm is divided into two parts:frontend and backend.The frontend is responsible for processing the image data and extracting the geometric relationship between the poses of the robot,firstly,the feature points of color RGB image are extracted,high dimensional feature descriptor are created and the location correspondence of feature points is established.The backend is responsible for expressing the position and pose of the robot at each moment and diminishing the drift of the trajectory,constructing a graph of the geometric position relationship and its uncertainty,through the optimization of the graph to get the best trajectory,finally,the sparse point cloud map and trajectory are generated.The experimental results show that the proposed method is practical and robust.

Key words: SLAM, RGB-D, graph optimization, feature extraction and matching, loop closure detection

中图分类号: