测绘通报 ›› 2018, Vol. 0 ›› Issue (4): 36-43,49.doi: 10.13474/j.cnki.11-2246.2018.0107

• 行业观察 • 上一篇    下一篇

结合最大似然算法和波利亚罐模型的全色遥感图像分类

李杰, 李玉, 王玉, 赵泉华   

  1. 辽宁工程技术大学测绘与地理科学学院遥感技术与应用研究所, 辽宁 阜新 123000
  • 收稿日期:2017-06-27 出版日期:2018-04-25 发布日期:2018-05-03
  • 作者简介:李杰(1992-),女,硕士生,主要研究方向为遥感图像处理。E-mail:357221180@qq.com
  • 基金资助:

    国家自然科学基金(41301479;41271435);辽宁省自然科学基金(2015020090)

Panchromatic Remote Sensing Image Classification Combining Maximum Likelihood Algorithm and Polya Urn Model

LI Jie, LI Yu, WANG Yu, ZHAO Quanhua   

  1. The Institute for Remote Sensing and Application, School of Geomatics, Liaoning Technical University, Fuxin 123000, China
  • Received:2017-06-27 Online:2018-04-25 Published:2018-05-03

摘要:

最大似然(ML)算法是一种应用广泛的遥感图像监督分类方法,该算法对样本区域的选择有很高的精度要求,选择难度降低了算法的效率。为此,本文提出了一种结合ML算法和波利亚罐模型的全色遥感图像分类方法。首先由ML算法得到各像素分属各类别的概率,根据得到概率计算此像素的罐模型中不同颜色小球的数量,完成图像罐模型的建立;根据波利亚罐模型随机采样过程,结合邻域,更新中心像素的罐模型中各类颜色小球的组成,直到各类小球数量比例达到稳定,得到最终分类结果。该方法可以进一步精确地对图像进行分类,且对样本选择无要求,简化了分类过程;分别对合成图像和真实遥感图像进行了试验,取得了较好的试验结果;定性和定量分析结果验证了该方法的可行性及有效性。

关键词: 图像分类, 波利亚罐模型, 最大似然算法, 分类精度

Abstract:

Maximum likelihood (ML) algorithm is a widely used supervised method for remote sensing images classification.In ML algorithm,samples selections need to be extremely accurate,which also reduce the algorithmic efficiency.Therefore,a new method combined ML algorithm and Polya urn model to achieve panchromatic remote sensing images classification is presented.First,ML algorithm is used to calculate subordination probabilities of pixels.The numbers of balls of different colors are calculated by these probabilities,and the urn model of the image can be initialized.Urns' compositions are iteratively updated by the random sampling process of Polya urn model.The balls of the neighborhood are also combined to determine the next state of the urn.Finally,by steadying the quantity proportions of balls the final classification is achieved.The proposed method could classify images more precisely,and there is no request of samples selections;random selections of samples are practicable,which make the classification process simple.The results obtained on both synthesized and real remote sensing images show that the proposed method works well and is very promising.

Key words: image classification, Polya urn model, maximum likelihood algorithm, classification accuracy

中图分类号: