测绘通报 ›› 2021, Vol. 0 ›› Issue (1): 84-89.doi: 10.13474/j.cnki.11-2246.2021.0015

• 学术研究 • 上一篇    下一篇

利用手机信令数据刻画不同人物画像

王岩1, 范子贤1, 李成名2, 戴昭鑫2   

  1. 1. 沈阳建筑大学交通工程学院, 辽宁 沈阳 110168;
    2. 中国测绘科学研究院, 北京 100000
  • 收稿日期:2020-02-20 修回日期:2020-09-11 发布日期:2021-02-08
  • 通讯作者: 范子贤。E-mail:727698163@qq.com
  • 作者简介:王岩(1979-),男,硕士,副教授,研究方向大数据分析和精密工程测量。E-mail:wyan413@163.com
  • 基金资助:
    国家重点研发计划资助(2018YFB2100704)

Portraying of different characters based on mobile phone signaling data

WANG Yan1, FAN Zixian1, LI Chengming2, DAI Zhaoxin2   

  1. 1. School of transportation engineering, Shenyang jianzhu University, Shenyang 110168, China;
    2. Chinese Academy of Surveying and Mapping, Beijing 100000, China
  • Received:2020-02-20 Revised:2020-09-11 Published:2021-02-08

摘要: 本文基于微软亚洲研究院Geolife项目北京志愿者2007—2012年长时间尺度的手机信令数据,以个体为单元开展了出行类型和人物画像研究,提出了一种基于高簇聚类对用户轨迹类型进行划分,然后结合出行规律,综合考虑职业类型、年龄、爱好属性特征的人物画像刻画的方法。研究主要结论为:①本文划分了包括两点一线固定型、两点一线变化型、双核心型、均匀分布型、发散型5种出行类型;②北京市拥有固定工作的技术人员或白领人群约占44%,学生群体或退休老人有接近1/4的数量。

关键词: 手机信令数据, 个体单元, 高簇聚类, 出行类型, 画像刻画

Abstract: Based on the long-term mobile phone signaling data of Beijing volunteers from Microsoft Research Asia Geolife project from 2007 to 2012, this article conducts research on travel types and portraits based on individuals. This paper proposes a method of character portrait characterization by first classifying user trajectory types based on high-cluster clustering, and then combining travel rules to consider occupation type, age, and hobby attributes. The main conclusions of the study are: ① This paper divides five types of travel including two-point, one-line fixed type, two-point, one-line change type, dual-core type, uniform distribution type, and divergent type. ② Beijing has fixed-work technology people or white-collar workers account for about 44%, and the student group or retired elderly account for nearly a quarter.

Key words: mobile signaling data, individual units, high clustering, travel type, characterization portrait

中图分类号: